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We study an extension of the Lotka–Volterra competition model in which one of 
the competing species avoids encounters with rivals by means of chemorepulsion—
a repulsive reaction to the scent of competitors. The evolution of the species 
densities is described in terms of parabolic equations with cross-diffusive and 
competitive terms. The chemical signal used to detect rivals may diffuse in the 
environment leading to a fully parabolic problem or to a parabolic–elliptic system 
if the diffusion of the chemical is dominant. The most difficult case from the 
viewpoint of well-posedness and global existence is the parabolic–ODE system 
which corresponds to the case when the chemical signal does not diffuse in the 
environment. We prove global existence of solutions in the three cases for any space 
dimension for a wide range of parameters and initial conditions. For the parabolic–
elliptic case, the moving rectangles method is adapted to prove the converge to a 
constant steady state for some range of parameters and initial data. Linear stability 
analysis indicates that the constant steady state in the fully parabolic case loses 
stability when the strength of chemorepulsion is too high and that sufficiently low 
degradation rate of chemorepellent stabilizes the constant steady state.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We consider an extension of the classical model of interspecies competition due to Lotka [14] and Volterra 
[27] in which individuals belonging to both competing population are assumed to disperse randomly in the 
region which they jointly occupy. Moreover individuals of the first species try to avoid encounters with 
competitors by means of negative chemotaxis (chemorepulsion)—a chemo-sensory reaction to the scent of 
rivals. Depending on the qualitative properties of the chemical signal and the environment, the chemical (e.g. 
volatile odorants, allelochemicals or kairomones) may diffuse in the environment or it may be considered as 
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a scent mark deposited in the environment (e.g. urinary proteins) in the case when it is not diffusive. Unlike 
visual or acoustic signals, olfactory signal persists in the absence of the signaler often over extended period 
of time. Scent marks are widely used among terrestrial vertebrates in the context of territory marking and 
defense (see e.g. [7]). They can be used to provide information to conspecifics or to interspecies competitors 
(see [5] and [30]). Denoting the densities of competing species by u and v and the density of the chemical 
signal (e.g. volatile odorant) by w the model of interspecies competition with chemorepulsion reads

ut = div(du∇u + χu∇w) + µ1u(1 − u− a1v), x ∈ Ω, t > 0 (1.1)

vt = dv∆v + µ2v(1 − v − a2u), x ∈ Ω, t > 0 (1.2)

τwt = dw∆w − λw + αv, x ∈ Ω, t > 0 (1.3)

where du > 0, dv > 0, dw ≥ 0, are the diffusion coefficients, χ > 0 is the chemorepulsion coefficient, µ1 > 0
and µ2 > 0 are the population growth rates and ai > 0 (for i = 1, 2) are the coefficients which describe the 
strength of competition. The functions u and v are defined on Ω × (0, +∞) where Ω ⊂IRN , N ≥ 1, is a 
bounded domain with smooth boundary. The system is supplemented by the boundary conditions

∂u

∂ν
= ∂v

∂ν
= dw

∂w

∂ν
= 0, x ∈ ∂Ω (1.4)

and initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) x ∈ Ω. (1.5)

Similarly to the Patlak–Keller–Segel model of chemotaxis (see [20] and [9]), the flux of the first species Ju
splits into two components, a pure diffusive flux Jdiff and a chemotactic one Jchem to obtain

Ju = Jdiff + Jchem = −du∇u− χu∇w.

The sign “−” in front of ∇w corresponds to a negative taxis, i.e. the movement of individuals towards 
decreasing concentration of the signaling chemical secreted by the individuals from the first species. The 
coefficients α and λ in (1.3) describe the rates of signal production and signal degradation respectively. 
By this indirect mechanism the first species try to avoid encounters with rivals of the second species. We 
consider three different cases for the model:

1 Fully parabolic system (τ = 1 and dw > 0) when the chemical signal disperses by diffusion in the 
environment and satisfies a second order equation of parabolic type;

2 Parabolic–elliptic system (τ = 0 and dw > 0) which results from assuming the quasi-stationary approx-
imation when the dynamics of signaling chemical is much quicker then that of species densities and the 
equation for the chemical is reduced to an elliptic equation;

3 Parabolic–ODE system (τ = 1, dw = 0) refers to the case when the chemical signal is not diffusive. 
The chemical signal is assumed to be deposited at spots occupied by the second species and such an 
olfactory cue plays the role of chemorepellent for the first species (see e.g. [7] for terrestrial ecosystems).

The first or second scenario takes place for instance in an aquatic environment (see e.g. [21], [5] and [30]) 
while the third in terrestial one (see e.g. [7]).
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For the Lotka–Volterra model

ut = µ1u(1 − u− a1v),
vt = µ2v(1 − v − a2u),

u(0) = u0 > 0 , v(0) = v0 > 0

there are three different cases depending on the range of parameters:

• Weak competition: 0 < ai < 1 for i = 1, 2. There exists a unique globally stable steady with positive 
coordinates which corresponds to the coexistence of both competing species.

• Strong competition: a1 > 1 , a2 > 1. There exists a unique steady state with positive coordinates which 
is unstable. Then depending on the initial data one of the two competitors stabilizes to its steady state 
being a winner while the other one tends to the extinction.

• Competitive exclusion of species: (a1 − 1)(a2 − 1) < 0 and ai > 0 for i = 1, 2. There is no steady state 
with positive coordinates and only one competitor wins and the other one tends to the extinction (j-th 
wins if ai > 1 , 0 < aj < 1) despite of the initial data.

The classical model does not concern inhomogeneous distribution of individuals in space and it is a natural 
question how the space distribution of species and their migration may affect mutual interactions of com-
peting species. In particular it is an interesting question whether the space homogeneous steady state could 
lose stability if changes in space distribution due to the migration of individuals are taken into account. In 
such a situation spacial segregation and pattern formation are expected to occur.

A way in which the Lotka–Volterra model may be extended to incorporate spatial interactions was 
proposed by Shigesada, Kawasaki and Teramoto [23]. Their model takes into account the role of self-diffusion 
and cross-diffusion effects in the inter-species competition. Keeping the notation for u and v the model takes 
the following form

ut = div{(du + 2a1,1u + a12v)∇u + a12u∇v)} + µ1u(1 − u− a1v), (1.6)
vt = div{(dv + a21u + 2a2,2v)∇v + a21v∇u)} + µ2v(1 − v − a2u), (1.7)

where du , dv are diffusion coefficients, a11, a22 are self-diffusion coefficients and a12, a21 denote cross-diffusion 
coefficients. The model leads to challenging mathematical problems and still some of them are unsolved. In 
the case of pure diffusion (i.e. ai,j = 0 for 1 ≤ i, j ≤ 2) and Ω being a convex set there is no non-constant 
stable steady states and in fact the constant positive steady state is a global attractor, so, in fact the 
dynamics is dominated by the ODE (see [3], [16] and [10]). It is worth mentioning the results of Yagi [29, 
Chapter 15] on the global existence of solutions to the full system (1.6)–(1.7) and the existence of global 
attractor for particular choice of coefficients ai,j. For thorough discussion of population models with diffusion 
and advection and vast survey of related literature we refer the reader to [15], [8] or [4]. Recently Wang et 
al. in [28] proposed the following model which after adjusting to our notation reads

ut = div(du∇u + χu∇v) + µ1u(1 − u− a1v), x ∈ Ω, t > 0, (1.8)

τvt = dv∆v + µ2v(1 − v − a2u), x ∈ Ω, t > 0 . (1.9)

It is easily seen that the model (1.8)–(1.9) could be considered as a special case of (1.6)–(1.7) under the 
assumption that only linear diffusion remains in both equations a21 = a2,2 = a2,2 = 0 and eventually only 
the cross-diffusion term a12u∇v remains in (1.6). On the other hand, in (1.8)–(1.9) there is a direct repulsive 
reaction of the first species with respect to the presence of the competitor while in our model (1.1)–(1.3), the 
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reaction is indirect based on some chemosensory mechanism as a very scent of rivals initiates the repulsive 
reaction. The global existence of solutions to the system (1.8)–(1.9) for the fully parabolic case (τ = 1) is 
proved only in the case of one space dimension. The parabolic–ODE version of (1.8)–(1.9) (i.e. dv = 0) has 
been recently studied in [12] for weak competition terms. For space dimension N > 1 the solutions are global 
in time for the parabolic–elliptic case (i.e. τ = 0). It is also shown that in the case of weak competition 
the constant steady state may be destabilized if we take χ large enough. Moreover the bifurcation analysis 
proves that for some range of parameters there are non-constant stable steady states.

The existence of global in time solutions for any space dimension for the system (1.1)–(1.3) has been 
studied in Section 2, Theorem 2.1. The proof is based on rather routine arguments even in fully parabolic 
case (τ = 1).

It is worth underlining at this point that the essential difference between models is due to the boundedness 
of advective velocity ∇w which in our case follows easily from (1.2) and (1.3) while for system (1.8)–(1.9)
an L∞-bound on ∇v is so far not known for N > 1. In the case of weak competition, the linear stability 
analysis leads to the similar condition on instability of the constant steady state as for model (1.8)–(1.9)
(see Proposition 2.2). It turns out that if we keep unchanged the competition coefficients and diffusion 
constants in both models, the critical value of χ for which the constant steady state loses stability may be 
significantly increased (see Remark 2.3) if the degradation rate of the chemorepellent is small enough. In 
other words the appearance of a sufficiently permanent chemorepellent stabilizes the constant steady state.

In Section 3 we study the parabolic–elliptic case, global existence and stability of constant steady states 
is obtained by using a sub and super solution method.

Section 4 is devoted to the modification of model (1.1)–(1.3) in which chemorepellent is non-diffusive 
dw = 0. The lack of regularity for w leads to some analytical problems in the prolongation of local-in-time 
solutions which we overcome using essentially the dissipative structure of the reaction part of the system. It 
is worth noticing a simple observation that any steady state of (4.34)–(4.36) is also a steady state to system 
(1.8)–(1.9) with χ replaced by χ̃ := λ

αχ and vice versa. Bifurcation analysis performed in [28] for system 
(1.8)–(1.9) implies that for some range of parameters our system (1.1)–(1.3) also possesses non-constant 
steady states. In Theorem 4.2 it is proved that the solution to the model with non-diffusive chemorepellent 
is global in time and uniformly bounded for any space dimension.

2. The fully parabolic system: global existence of solutions and linear stability

Theorem 2.1. Suppose that u0 , v0 , w0 ∈ W 1,p(Ω), p > N are nonnegative functions. Then, for τ = 1 and 
dw > 0 there exists a unique global classical solution to (1.1)–(1.3) defined on Ω × (0 , +∞) .

Proof. In the case τ = 1 we may notice that the main part of the quasilinear parabolic system is a normally 
elliptic operator with upper-triangular structure and the existence and uniqueness of maximal classical 
solution defined on Ω × (0 , Tmax) follows from Amann’s theory [2, Theorems 14.4 & 14.6]. The nonnegativity 
of solutions easily follows from the maximal principle. Since there is K > 0 such that u(1 −u −a1v) ≤ K−u

for u, v ≥ 0 integrating the first equation on Ω and using (1.4) we easily infer that for some constant C > 0

∫

Ω

u(x, t)dx ≤ C for t ∈ [0 , Tmax), (2.10)

and by the comparison technique with logistic ODE applied to (1.2) we obtain that v is an L∞-bounded 
function and

0 ≤ v(·, t) ≤ max{1 , (1 + (∥v0∥−1
∞ − 1)e−µ2t)−1} for t ∈ [0 , Tmax) . (2.11)
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From [11] and (1.3) we obtain (2.11) and thanks to parabolic regularity theory we deduce that there exists 
a constant C2 such that

∥w(· , t)∥W 1,∞(Ω) ≤ C2 for t ∈ [0 , Tmax). (2.12)

Applying the well-known Alikakos–Moser technique [1] to (1.1), essentially in the same way as [28], we 
obtain that there is a constant C3 independent of time such that

∥u(·, t)∥∞ ≤ C3 for t ∈ [0 , Tmax). (2.13)

Finally, it follows from (2.11)–(2.13) that

∥u(·, t)∥∞ + ∥v(·, t)∥∞ + ∥w(·, t)∥∞ ≤ C5 for t ∈ [0 , Tmax), (2.14)

and due to the fact that the main part of the operator is upper-triangular, it follows from [2, Theorem 15.5]
that the uniform L∞ bound (2.14) ensures the extendability criterion for the maximal solution to get 
Tmax = +∞. ✷

2.1. Steady states and linearization

In this section we study the stability of the positive constant steady state

P = (u∗, v∗, w∗) =
( 1 − a1

1 − a1a2
,

1 − a2
1 − a1a2

,
α(1 − a2)
λ(1 − a1a2)

)
(2.15)

under assumption of weak competition, i.e.

0 < ai < 1, for i = 1, 2 (2.16)

which corresponds to the stable coexistence of both species in the frame of the ODE model. We shall show 
that chemorepulsion may destabilize such a steady state.

Let {λn}∞n=0 be the sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . , (2.17)

of operator −∆ defined on the space

W 2,p
B =

{
ϕ ∈ W 2,p(Ω) : ∂ψ

∂ν
= 0

}
.

Notice also that the linear part of the operator in (1.1)–(1.3) is normally elliptic and it has only point 
spectrum. Standard linearization (see e.g. [13, Lemma 2.1]) of the system (1.1)–(1.3) at the steady state P
leads to the following matrix

Dn =

⎡

⎢⎣
−duλn − µ1u∗ −µ1a1u∗ −χu∗λn

−µ2a2v∗ −(dvλn + µ2v∗) 0
0 α −dwλn − λ

⎤

⎥⎦ . (2.18)
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Proposition 2.2. Under assumption (2.16), P , the steady state of (1.1)–(1.3) is locally asymptotically stable 
if

χ < χ0 := min
n≥1

(dλn + Ψ) (En + (dwλn + λ)((d + dw)λn + Ψ + λ))
u∗v∗µ2a2αλn

(2.19)

where

d = du + dv , Ψ = µ1u
∗+ µ2v

∗ (2.20)

and

En = (duλn + µ1u
∗)(dvλn + µ2v

∗) − µ1µ2a1a2u
∗v∗> 0 . (2.21)

For χ > χ0 large enough, the steady state “P” is unstable.

Proof. The steady state P is locally stable if real parts of eigenvalues of matrix Dn are negative for n ≥ 1, 
the case of D0 will be considered separately. Dn has the following characteristic polynomial

q(σ) = σ3 + A2(n)σ2 + A1(n)σ + A0(n)

where

A2(n) = (du + dv + dw)λn + Ψ + λ ,

A1(n) = En + (dwλn + λ)[dλn + Ψ] ,
A0(n) = χu∗v∗µ2a2αλn + (dwλn + λ)En ,

with d , Ψ , En being defined in (2.20)–(2.21). Notice that

A0(n) > 0 , A1(n) > 0 for n ≥ 1

and it follows from the Routh–Hurwitz criterion (see e.g. Murray [17], Appendix B.1) that all eigenvalues 
of Dn have negative real parts if and only if for all n ≥ 1

A0(n) < A1(n)A2(n). (2.22)

After lengthy but straightforward calculations (2.22) turns out to be equivalent to

p(λn) := (dλn + Ψ)(En + (dwλn + λ)((d + dw)λn + Ψ + λ)) > χu∗v∗µ2a2αλn .

Notice that p(x) is a polynomial of the third order with positive coefficients and p(0) > 0. Now it is clear 
that for x > 0 the function x *−→ p(x)

u∗v∗µ2a2αx
has a positive minimum and there exist

χ0 = min
n≥1

p(λn)
u∗v∗µ2a2αλn

.

Hence the stability condition follows for χ < χ0. Notice that for the case n = 0 we have λ0 = 0 , E0 =
µ1µ2u∗v∗(1 − a1a2) > 0 and it is easy to check that Ai(0) > 0 for all i and (2.22) holds which implies that 
all the eigenvalues of D0 are negative.
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Using again the Routh–Hurwitz criterion we infer that P is unstable if for some χ > χ0 there exists λn

such that

p(λn) < χu∗v∗µ2a2αλn .

The last observation completes the proof. ✷

Remark 2.3. The stability condition of the state (u∗, v∗) for model (1.8)–(1.9) from [28] is the following

χ < χ1 := min
n≥1

En

u∗v∗µ2a2λn
(2.23)

where the original notation used in [28] is suitably adjusted. Notice that χ0 > χ1 provided (dλ1+Ψ)
α > 1

whence we conclude that the range of stability for parameter χ in our model is wider than that in model 
(1.8)–(1.9) provided the degradation rate of chemorepellent is small enough.

If some value of χ = χ′ is in the instability region for model (1.8)–(1.9) and we keep unchanged the 
competition and diffusion coefficients in both models then the degradation coefficient of chemorepellent 
may be taken small enough such that χ′ is still in the stability region of the constant steady state in our 
model.

3. Parabolic–elliptic case

In this section we study the long time behavior of solutions to the parabolic–elliptic model when τ = 0, 
then

ut = div(du∇u + χu∇w) + µ1u(1 − u− a1v), x ∈ Ω, t > 0 (3.24)
vt = dv∆v + µ2v(1 − v − a2u), x ∈ Ω, t > 0 (3.25)
0 = dw∆w − λw + αv, x ∈ Ω, t > 0. (3.26)

Theorem 3.1. Suppose that u0 , v0 ∈ W 1,p(Ω), p > N are nonnegative functions. Then, for τ = 0 and dw > 0
there exists a unique global classical solution to (1.1)–(1.3) defined on Ω × (0 , ∞) .

Proof. To obtain the global existence of solutions, we split the non-linear second order term in the following 
way

div(χu∇w) = χ∇u∇w + χu∆w = χ∇u∇w + χ

dw
u(λw − αv)

and replace it in the equation. We now proceed as in the Theorem 2.1 to obtain that u ≥ 0 and the uniform 
bounds for ∥v∥L∞(Ω) and ∥w∥W 1,∞(Ω). The rest of the proof follows the arguments of [25, Lemma 2.1]. ✷

The following results shows that for some range of parameters the basin of attraction of steady state P
defined in (2.15) may be estimated.

Theorem 3.2. Let 0 < ai < 1 for i = 1, 2, then, under assumption

µ1
a2

>
2χα
dw

+ µ1a1, µ2 > 0 (3.27)

for bounded initial data u0, v0 satisfying
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0 < min
x∈Ω

{u0} ≤ max
x∈Ω

{u0} < ∞

0 < min
x∈Ω

{v0} ≤ max
x∈Ω

{v0} < ∞,

the solution to the problem (3.24)–(3.26) satisfies

∥u(t) − u∗∥L∞(Ω) + ∥v(t) − v∗∥L∞(Ω) + ∥w(t) − w∗∥L∞(Ω) → 0 as t → ∞.

Proof. The nonlinear second order term is treated as follows:

div(χu∇w) = χ∇u∇w + χu∆w = χ∇u∇w + χ

dw
u(λw − αv)

then, the equation (3.24) reads

ut = du∆u + χ∇u∇w + χ

dw
u(λw − αv) + µ1u(1 − u− a1v), x ∈ Ω, t > 0

i.e.

ut = du∆u + χ∇u∇w + µ1u

[
1 + χλ

dwµ1
w − u−

(
a1 + χα

dwµ1

)
v

]
, x ∈ Ω, t > 0.

We consider the following system of ODEs

ut = µ1u

[
1 + χα

dwµ1
v − u−

(
a1 + χα

dwµ1

)
v

]
(3.28)

ut = µ1u

[
1 + χα

dwµ1
v − u−

(
a1 + χα

dwµ1

)
v

]
(3.29)

vt = µ2v(1 − v − a2u), (3.30)

vt = µ2v(1 − v − a2u), (3.31)

satisfying the following initial conditions

u(0) = u0, u(0) = u0, v(0) = v0, v(0) = v0 (3.32)

under assumption

0 < u0 < u∗< u0, 0 < v0 < v∗< v0. (3.33)

Notice that, standard ODE theory gives the global existence, positivity and uniformly boundedness of 
solutions of the system (3.28)–(3.31). The next three lemmatta will lead to completion of the proof of the 
theorem

Lemma 3.3. Under assumptions (3.27) and (3.33) the solution to the ODE system (3.28)–(3.31) satisfies 
the following order relation

u(t) < u(t), v(t) < v(t) for t > 0.
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Proof. We argue by contradiction and assume that there exists t0 > 0 such that

(u(t0) − u(t0))(v(t0) − v(t0)) = 0

and

(u(t) − u(t))(v(t) − v(t)) > 0, for t < t0.

Then, three situations may occur:

Case 1. u(t0) = u(t0) and v(t0) > v(t0);
Case 2. u(t0) > u(t0) and v(t0) = v(t0);
Case 3. u(t0) = u(t0) and v(t0) = v(t0).

The positivity of the solutions gives that in Case 1,

ut(t) > ut(t), for t ≤ t0

which contradicts u(t0) = u(t0) and (3.33). In the same way Case 2 contradicts v(t0) = v(t0) and (3.33). In 
Case 3, we consider the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ũt = µ1ũ
[
1 + χα

dwµ1
ṽ − ũ−

(
a1 + χα

dwµ1

)
ṽ
]

ṽt = µ2ṽ(1 − ṽ − a2ũ),

ũ(t0) = u(t0) = u(t0), ṽ(t0) = v(t0) = v(t0),

which has a unique solution in (t0 − δ, t0 + δ) for some δ > 0 small enough. Notice that

u = u = ũ, v = v = ṽ,

is a solution to the ODE system (3.28)–(3.31). Uniqueness of solutions of (3.28)–(3.31) guarantee that

u(t) = u(t), v(t) = v(t), for any t ∈ (t0 − δ, t0 + δ)

which contradicts the definition of t0 and ends the proof. ✷

Lemma 3.4. Under assumptions (3.27) and (3.33) the solution to the ODE system (3.28)–(3.31) satisfies

|u(t) − u(t)| + |v(t) − v(t)| → 0 as t → ∞.

Proof. We now divide (3.28) by u, (3.29) by u, (3.30) by v and (3.31) by v to obtain,

ut

u
= µ1

[
1 + χα

dwµ1
v − u−

(
a1 + χα

dwµ1

)
v

]

ut

u
= µ1

[
1 + χα

dwµ1
v − u−

(
a1 + χα

dwµ1

)
v

]

vt
v

= µ2(1 − v − a2u)
vt
v

= µ2(1 − v − a2u).
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We combine the equations for u and u to get

d

dt
(log u− log u) = (2χα

dw
+ µ1a1)(v − v) − µ1(u− u)

d

dt
(log v − log v) = µ2a2(u− u) − µ2(v − v).

We multiply the last equation by a constant A satisfying

Aµ2a2 < µ1, Aµ2 >
2χα
dw

+ µ1a1.

Notice that such A exists in view of assumption (3.27), then

d

dt

(
log u

u
+ A log v

v

)
≤ −ϵ(u− u + v − v)

for

ϵ < min
{
Aµ2 −

(2χ
dw

+ µ1a1

)
, µ1 −Aµ2a2

}
.

We now proceed as in [24, Theorem 5.1] to deduce that

|u(t) − u(t)| + |v(t) − v(t)| → 0 as t → ∞

and the proof ends. ✷

Lemma 3.5. Under assumptions of Theorem 3.2, the solution (u, v, w) to (3.24)–(3.26) satisfies

u(t) ≤ u(t, x) ≤ u(t), v(t) ≤ v(t, x) ≤ v(t, x), α

λ
v(t) ≤ w(t, x) ≤ α

λ
v(t, x)

for (t, x) ∈ [0, ∞) × Ω.

Proof. The proof is similar to the proof of [18, Theorem 2.1], therefore we only present the main idea of 
the proof:

We consider T < ∞ and the following functions

U(x, t) := u(x, t) − u(t), U(x, t) := u(x, t) − u(t),
V (x, t) := v(x, t) − v(t), V (x, t) := v(x, t) − v(t),

W (x, t) := w(x, t) − α

λ
v(t), W (x, t) := u(x, t) − α

λ
v(t),

which satisfy the system of equations

U t − du∆U = χ∇U∇W + g11U + g12V + g13W, x ∈ Ω, t ∈ (0, T )
U t − du∆U = χ∇U∇W + g21U + g22V + g23W, x ∈ Ω, t ∈ (0, T )

V t − dv∆V = g31V + g32U, x ∈ Ω, t > 0
V t − dv∆V = g41V + g42U, x ∈ Ω, t > 0

−dw∆W + λW = αV , x ∈ Ω,

−dw∆W + λW = αV , x ∈ Ω,
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where gij = gij(u, v, w, u, u, v, v) (for i = 1 . . . 4 and j = 1 . . . 3) are continuous functions and

g12 ≤ 0, g13 ≥ 0, g22 ≤ 0, g23 ≥ 0, g32 ≤ 0 and g42 ≤ 0.

We multiply the previous equations by U+, U−, V +, V −, W+, W− respectively and after routine compu-
tations we obtain

d

dt

∫

Ω

U
2
+ + U2

− + V
2
+ + V 2

− ≤ K(T )
∫

Ω

U
2
+ + U

2
− + V

2
+ + V

2
−, for t < T .

We apply Gronwall’s inequality to the previous inequality to obtain

U+ = U− = V + = V − = 0, for t < T

and thanks to maximum principle we also get

W+ = W− = 0.

To end the proof we take limits as T → ∞. ✷

End of the proof of the Theorem 3.2. Now, the proof of the Theorem follows from Lemma 3.4 and 3.5. ✷

4. Model with non-diffusive chemorepellent

In this section we study the case of non-diffusing signaling chemical i.e. dw = 0 which in this case may 
be interpreted as an olfactory cue left by rivals from the other population. Then the model reads

ut = div(du∇u + χu∇w) + µ1u(1 − u− a1v), x ∈ Ω, t > 0, (4.34)
vt = dv∆v + µ2v(1 − v − a2u), x ∈ Ω, t > 0, (4.35)

τwt = −λw + αv, x ∈ Ω, t > 0. (4.36)

Notice that there is a correspondence between the steady states of (4.34)–(4.36) and those of (1.8)–(1.9). 
Namely each steady state P = (ū , ̄v, w̄) of (4.34)–(4.36) satisfies v̄ = λ

α w̄ which implies that (ū , ̄v) is a 
steady state of (1.8)–(1.9) with χ replaced by χ̃ := λ

αχ. It is easily seen that the inverse statement also 
holds true. The following statement is an immediate consequence of [28, Theorem 3.1].

Proposition 4.1. For space dimension N = 1 and some χ > λ
αχ1, where χ1 was defined in (2.23), the system 

(4.34)–(4.36) possesses non-constant steady states.

To analyze the time dependent problem we first introduce the following change of unknown functions, 
from u to z

z := ue
χ
du

w (4.37)

being a usual trick which simplifies analysis of chemotaxis models with non-diffusing chemoattractant (this 
is the case of models of tumor progression which take into account haptotaxis). Then on substituting to 
(4.34) we find

ut = e−
χ
du

w(zt − z
χ

du
wt) = e−

χ
du

w(zt −
χ

duτ
z(αv − λw))
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and

div(du∇u + χu∇w) = e−
χ
du

w(du∆z − χ∇z∇w) .

Then multiplying (4.34) by e−
χ
du

w we arrive at

zt = du∆z − χ∇z∇w + µ1z(1 − ze−
χ
du

w − a1v) + χ

duτ
z(αv − λw), (4.38)

vt = dv∆v + µ2v(1 − v − a2ze
− χ

du
w), (4.39)

τwt = −λw + αv, (4.40)

defined on Ω × (0, ∞) with homogeneous Neumann boundary conditions on z and v. By denoting

Z(t) = (z(t) , v(t))T and F = (F1 , F2)T

and using the variation of constant formula the system may be transformed into the form

Z(t) = Z(0) +
t∫

0

e−(t−s)AF (Z(s) , w(s))ds (4.41)

w(t) = w0e
−λt + α

t∫

0

e−λ(t−s)v(s)ds (4.42)

where A = (Au , Av)T = (−du∆ + Id , −dv∆ + Id)T is defined on W 2,p
B × W 2,p

B for

W s,p
B = W s,p

B (Ω) = {ϕ ∈ W s,p(Ω) : ∂ψ
∂ν

= 0}

and

F1(Z ,w) = z − χ∇z∇w + µ1z(1 − ze−
χ
du

w − a1v) + χ

duτ
z(αv − λw) ,

F2(Z ,w) = v + µ2v(1 − v − a2ze
− χ

du
w) .

Notice that A is a generator of an analytic semigroup in Lp(Ω) × Lp(Ω) and fractional power space Xγ
p =

D(Aγ
u) = D(Aγ

v) is well defined for γ ∈ [0 , 1] (see. e.g. [6, Definition 1.4.7]). We fix γ such that 1 > γ > 1
2+ N

2p . 
Using again [6, Theorem 1.6.1] it entails that

Xγ
p ⊂C1(Ω̄) . (4.43)

It follows from [29, Theorem 16.11] that for 1 > γ > 1
2 + N

2p

Xγ
p = W 2γ,p

B (Ω) ,

where W 2γ,p(Ω) is the fractional order Sobolev space.
The first result of this section is the existence of global solutions, the result is enclosed in the following 

theorem.
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Theorem 4.2. Suppose that p > N , the initial functions are nonnegative and u0 , v0 w0 ∈ W γ′,p
B (Ω) for some 

2 > γ′ > 1 + N
p . Then there exists a unique global-in-time solution (u, v, w) to (4.34)–(4.36) such that for 

any T > 0

u , v , w ∈ C([0, T ] : W γ′,p
B (Ω))

with uniform in time L∞-bound. Moreover u , v , w ∈ C2,1
x,t (Ω̄ × (0 , T )).

The proof of Theorem 4.2 is preceded by two propositions. The following statement concerns the existence 
of local-in-time solution to the auxiliary problem (4.38)–(4.40).

Proposition 4.3. For any N ≥ 1 and z0 , v0 , w0 ∈ Xγ
p there exists Tmax such that z , v , w ∈ C([0, Tmax) : Xγ

p )
is a unique solution to (4.38)–(4.40) and

Tmax = ∞ or Tmax < ∞ and lim
t→Tmax

max{∥z(t)∥Xγ
p
, ∥v(t)∥Xγ

p
} = ∞ .

Moreover z , v , w ∈ C2,1
x,t (Ω̄ × (0 Tmax)).

Proof. The existence and uniqueness of local-in-time mild solution z , v , w ∈ C([0, Tmax) : Xγ
p ) satisfying 

(4.41)–(4.42) (see e.g. [6] or [22]) is proved by means of the Banach Contraction theorem using routine 
arguments based on the fact that due to (4.43) F in (4.41) is a locally Lipschitz continuos function in the 
following sense:
For any (Z1, w1)T , (Z2 , w2)T ∈ (Xγ

p )3) such that ∥(Zi, wi)T ∥(Xγ
p )3 ≤ R there exists a constant C(R) such 

that

∥F (Z1, w1) − F (Z2, w2)∥Lp(Ω) ≤ C(R)∥Z1 − Z2∥(Xγ
p )2 + ∥w1 − w2∥Xγ

p
. (4.44)

In order to raise the regularity of the mild solution notice that for fixed w given by (4.42) and any 
T < Tmax for any 0 ≤ t1 < t2 ≤ T we have

∥w(t2) − w(t1)∥Xγ
p
≤ ∥w0∥Xγ

p
λ|t2 − t1| + Tαλ sup

t∈[0,T ]
∥v(t)∥Xγ

p
|t2 − t1| (4.45)

and hence we may define F̃ (Z, t) = F (Z , w(t)) and the first two equations may be considered in the abstract 
form

Zt + AZ = F̃ (Z , t) Z(0) = Z0.

It follows from (4.44) and (4.45) that there exists a constant C ′ such that

∥F̃ (Z2 , t2) − F̃ (Z1 , t1)∥Lp(Ω) ≤ C ′(∥Z1 − Z2∥(Xγ
p )2 + |t2 − t1|)

Classical results from [6] entails that

z, v ∈ C(0 , T ;W 2,p
B ) , zt , vt ∈ C(0 , T ; (Lp(Ω))) (4.46)

and in view of (4.42) we easily deduce that

w ∈ C1(0 , T ; (W 2,p
B )) (4.47)
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The parabolic regularity theory implies that u , v , w ∈ C2,1
x,t (Ω̄ × (0 Tmax)) . The uniqueness of solution 

is an immediate consequence of the regularity of solutions and local Lipshitz continuity of the nonlinear 
terms. ✷

Let us notice that thanks to the regularity of functions, the solution (z, v, w) to (4.38)–(4.39) defines the 
solution to our original problem (u, v, w) to (4.34)–(4.36). We proceed to prove that the maximal solution 
is uniformly bounded in L∞. Observe that (2.11) implies that there is a constant vM independent on time 
such that

vM := sup
t∈[0 ,Tmax]

∥v(t)∥∞

and (4.36) implies that

sup
t∈[0 ,Tmax)

∥w(t)∥∞ ≤ max{∥w0∥∞,
αvM
λ

} := wM

it remains to show that there is a constant uM

uM := sup
t∈[0 ,Tmax)

∥u(t)∥∞ < ∞ .

The proof of L∞ boundedness is presented in the following two lemmas. The main idea is adapted from [19, 
Lemma 2.5] and it is based on introducing an iteration with respect to p for the norm L∞(0, Tmax : Lp(Ω)).

Remark 4.4. Since the initial data satisfy u0 ≥ 0, v0 ≥ 0 and w0 ≥ 0 we obtain

u ≥ 0, v ≥ 0, and w ≥ 0 for t ∈ [0, Tmax). (4.48)

Let us denote

f(w) = e
χ
du

w

and notice that

f ′(w) = χ

du
f(w).

Lemma 4.5. Let (u, v, w) be a solution to (4.34)–(4.36). For p > 1 and t ∈ (0 , Tmax) it holds

1
p− 1

d

dt

∫

Ω

upfp−1dx ≤ −a

∫

Ω

up+1fpdx + b

∫

Ω

upfp−1dx, (4.49)

for

a := pµ1

(p− 1)e
χ
du

wM
and b := pµ1

p− 1 + χ

duτ
αvM .

Proof. We first compute

d

dt

∫

Ω

upfp−1dx = p

∫

Ω

up−1utf
p−1dx + 1

τ

∫

Ω

up(fp−1)′(αv − λw)dx

= p

∫

Ω

up−1utf
p−1dx + (p− 1) χ

duτ

∫

Ω

upfp−1(αv − λw)dx
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= p

∫

Ω

up−1fp−1(∇ · (du∇u + χu∇w))dx + pµ1

∫

Ω

upfp−1(1 − u− a1v)dx

+ (p− 1) χ

duτ

∫

Ω

upfp−1(αv − λw)dx

= −p

∫

Ω

d−1
u ∇(duup−1fp−1)(du∇u + χu∇w)dx

+ pµ1

∫

Ω

upfp−1(1 − u− a1v)dx + (p− 1) χ

duτ

∫

Ω

upfp−1(αv − λw)dx.

Next we observe that

du∇(up−1fp−1) = (p− 1)up−2fp−1(du∇u + χu∇w)

and we get

d

dt

∫

Ω

upfp−1dx = −p(p− 1)d−1
u

∫

Ω

up−2fp−1(du∇u + χu∇w)2dx

+ pµ1

∫

Ω

upfp−1dx− pµ1

∫

Ω

up+1fp−1dx− pµ1a1

∫

Ω

upfp−1vdx

+ (p− 1) χ

duτ

∫

Ω

upfp−1(αv − λw)dx .

Notice that thanks to (4.48) we get f ≤ e
χ
du

wM and

−up+1fp−1 ≤ −e−
χ
du

wMup+1fp

and finally we obtain the inequality

1
p− 1

d

dt

∫

Ω

upfp−1dx ≤ − pµ1

(p− 1)e
χ
du

wM

∫

Ω

up+1fpdx

+
(

pµ1
p− 1 + χ

duτ
αvM

)∫

Ω

upfp−1dx. ✷

Next we proceed to prove a uniform L∞-bound for u.

Lemma 4.6. There is a constant uM independent of time such that the first component of the solution to 
(4.34)–(4.36) satisfies

∥u(t)∥∞ ≤ max
{
f(wM )∥u0∥∞ ,

b + 1
a

}
= uM for t ∈ [0, Tmax), (4.50)

where

a := µ1

e
χ
du

wM
and b := 2µ1 + χ

duτ
αvM .
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Proof. Let us denote

Yp =
∫

Ω

upfp−1dx.

Then, for any k > 0 we have
∫

Ω

upfp−1 dx =
∫

{kauf≥1}

upfp−1dx +
∫

{kauf<1}

upfp−1 dx

≤ ka

∫

{kauf≥1}

up+1fp dx + (ka)1−p

∫

{kauf<1}

u dx

≤ ka

∫

Ω

up+1fp dx + (ka)1−p

∫

Ω

u dx.

It follows that

−a

∫

Ω

up+1fp dx ≤ −1
k

∫

Ω

upfp−1 dx + k−pa1−p

∫

Ω

u dx

and using (4.49) we have

1
p− 1

d

dt
Yp ≤

(
b− 1

k

)
Yp + k−pa1−p

∫

Ω

u dx .

Choosing k := (b + 1)−1 and multiplying both sides of the inequality by p − 1 we arrive at

d

dt
Yp ≤ −(p− 1)Yp + k−p(p− 1)a1−p

∫

Ω

u dx .

Solving this inequality we get

Yp ≤ max

⎧
⎨

⎩ Yp(0) , (b + 1)pa1−p

∫

Ω

udx

⎫
⎬

⎭

then, we find

Y
1
p
p ≤ max

⎧
⎨

⎩ Yp(0) 1
p , (b + 1)a−1+ 1

p |
∫

Ω

udx|
1
p

⎫
⎬

⎭ .

We now take limits as p → ∞ to deduce that

∥u(t)∥∞ ≤ max
{
f(wM )∥u0∥∞ , (b + 1)(a)−1} = uM

where

a := µ1

e
χ
du

wM
and b := 2µ1 + χ

du
αvM

and the proof ends. ✷
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Proof of Theorem 4.2. Let us consider the system (4.38)–(4.40). Since ∥u(t)∥∞ ≤ uM , ∥v(t)∥∞ ≤ vM and 
∥w(t)∥∞ ≤ wM for t ∈ [0 , Tmax) we infer that there exist constants zM and F2,M such that ∥z(t)∥∞ ≤ zM
and

∥F2(z, v, w)∥L∞(0,Tmax:L∞(Ω)) ≤ F2,M .

Using the classical semigroup estimates (see e.g. [6, Theorem 1.4.3])we obtain for t ∈ [0 , Tmax)

∥v(t)∥Xγ
p
≤ ∥v0∥Xγ

p
+

t∫

0

e−δ(t−s)(t− s)−γF2(u(s), v(s), w(s))ds (4.51)

≤ ∥v0∥Xγ
p

+ kγ
1 − γ

T 1−γ
maxF2,M .

By (4.36) we have

∥w(t)∥Xγ
p
≤ e−λt∥w0∥Xγ

p
+ α

t∫

0

e−λ(t−s)∥v(t)∥Xγ
p
ds

and (4.43) along with L∞ bounds on z and v entail that there exists F1,M > 0 such that

∥F1(u, v, w)∥L∞(0,Tmax:L∞(Ω)) ≤ F1,M

and similar argument as in (4.51) yields

∥z(t)∥Xγ
p
≤ ∥z0∥Xγ

p
+ kγ

1 − γ
T 1−γ
maxF1,M .

Hence using Proposition 4.3 we deduce that Tmax = ∞ and the solution is global in time. ✷

Remark 4.7. Proposition 2.2 on the linear stablity of the steady state P holds true also in the case dw = 0. 
The only modification to the proof is related to the fact that in the parabolic–ODE case where the elliptic 
part of the system is degenerate. To prove the asymptotic stability we have to show that the spectrum of the 
linearizated operator is separated away from the imaginary axis. This result is easily deduced from Vieta 
formulae applied to the characteristic polynomial in the same way as in the proof of Theorem 3.1 in [26].
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