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We analyze predator–prey models in which the movement of predator searching for
prey is the superposition of random dispersal and taxis directed toward the gradient of
concentration of some chemical released by prey (e.g. pheromone), Model II, or released
from damaged or injured prey due to predation (e.g. blood), Model I. The logistic O.D.E.
describing the dynamics of prey population is coupled to a fully parabolic chemotaxis
system describing the dispersion of chemoattractant and predator’s behavior. Global-in-
time solutions are proved in any space dimension and stability of homogeneous steady
states is shown by linearization for a range of parameters. For space dimension N ≤ 2
the basin of attraction of such a steady state is characterized by means of nonlinear
analysis under some structural assumptions. In contrast to Model II, Model I possesses
spatially inhomogeneous steady states at least in the case N = 1.
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1. Introduction

Most of the models describing predator–prey interactions of spatially distributed
populations have the structure of reaction–diffusion system in which reaction part
is of Rosenzweig–MacArthur type,27,25 (the generalization of the famous Lotka–
Volterra system) and diffusive dispersion of each population is modeled by Laplace
operator,38,22 or cross-diffusion terms.32 We refer the reader to an extensive survey
by Jüngel,18 which contains a large bibliography on the topic. However, there are
many examples of predators whose foraging strategy of movement is the super-
position of random dispersion with prey tactic pursuit. The mathematical model
of predator–prey interaction with prey-taxis was proposed for the first time by
Kareiva and Odell19 and later extended by other authors.12,4,28,1,21,34 Prey-taxis
allows predators to search prey more actively and thus it is expected to eliminate
more effectively local concentrations of prey. Contrary to a diffusion process that
may give rise to Turing-like instabilities and pattern formation, prey-taxis in most
cases tends to stabilize predator–prey interactions in such a way that predator
activity in the long-time perspective transforms heterogeneous environment into
homogeneous one (see Refs. 21 and 36). This is in some sense an opposite result to
the case of Keller–Segel chemotaxis system where the chemotaxis may lead in space
dimension N ≥ 2 to the formation of aggregates or inhomogeneous space patterns
(see Refs. 32 and 31). We also refer to the recent survey3 on the role of chemotaxis
in modeling pattern formation.

In this paper, we study two models describing “indirect” prey-taxis in the sense
that the predator moves following the gradient of some chemical which indicates
the presence of prey instead of moving directly toward the highest density of prey.
In the Model IPT1, the role of chemoattractant detectable by an olfactory predator
is played by a chemical substance released by prey already injured during captur-
ing. Hunting of a carnivorous shark following the smell of blood is an example of
such an indirect prey-taxis in a marine ecosystem (see e.g. Refs. 7, 13 and 40). We
also refer to Lonnstedt et al.23 reporting experimental studies on the role of dif-
ferent chemosensory cues in predator–prey interactions in marine ecosystems and
Schuster30 reporting tactic response of amoebas to chemicals produced by bacte-
ria playing the role of prey. In the second Model IPT2, we consider the response
of predator to some substances released by prey, as pheromones (kairomones) (see
Refs. 39 and 17), chemical alarm cues,9 sexual signals,41 which may play the role
of chemoattractant for the foraging predator. There is a vast biological literature
devoted to chemosensory adaptations of predators for prey detection; though most
of the attention has been paid to the role of chemical cues (kairomons) emitted by
predators in development of defend adaptations in prey (see e.g. the survey by Fer-
rari9). We mention also that a model of chemotaxis with indirect signal production
was studied recently,35 in a different biological context.

To study the role of indirect prey-taxis in the formation of prey aggregations we
propose two models which may be studied analytically and still indicate interesting
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features from the biological point of view. Our approach is based on the following
main assumptions:

— We consider a generalist predator having in its diet a prey species which is of
our interest.

— The life span of the predator is significantly longer than the one of the prey. It
allows us to neglect the impact of the prey population on the growth rate of
predator.

— The motility of prey is negligible with respect to predators motility.

Foraging of a planctivorous fish on zooplankton is an example of a situation in
which such simplifications may be justified (see for instance Ref. 11). We propose
a “minimal” model of dynamics of prey population accounting for the intraspecific
competition which is modeled by the logistic term. The role of predator is reduced to
foraging with search strategy being the superposition of random (diffusive) dispersal
and chemotaxis. Hence, only changes in spatial distribution of predator population
due to searching of food may cause changes in prey mortality in space due to local
grouping of predators on aggregations of prey.

We denote by u and v the densities of predators and prey, respectively and
assume that they occupy a bounded region Ω ⊂ R

N with regular boundary ∂Ω.
The concentration of the chemoattractant released by prey is denoted by w.
We first consider

Model IPT1: Predator searching strategy is the superposition of random disper-
sion and directed movement toward the gradient of a chemical released by prey
injured during capturing:

ut = du∆u− div(χu∇w), x ∈ Ω, t > 0,

wt = dw∆w − µw + αvF0(u), x ∈ Ω, t > 0,

vt = λv
(
1 − v

k

)
− vF0(u), x ∈ Ω, t > 0

with non-negative initial data and homogeneous Neumann boundary conditions

∂u

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω,

where ν denotes the outer normal unitary vector at the boundary, du and dw are
the diffusion coefficients of the predators and chemoattractant, respectively, χ is
the chemotactic sensitivity, µ is the decay rate of chemoattractant, λ is the growth
rate in prey population and k its carrying capacity. We assume that F0 is positive,
bounded, smooth function and satisfies

F0(0) = 0, lim
u→+∞F0(u) = Fm.

The Monod function

F0(u) =
Fmu

κ+ u
, κ, Fm > 0 (1.1)
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may serve as an example of such a function. The term F0(u) is interpreted as the
mortality of prey due to the activity of predator with maximum mortality rate Fm.

On the other hand, in the classical theory of predator–prey interactions, the rate
of prey consumption per predator is described as a function of prey and/or predator
density named as the functional response. In our case, for the sake of simplicity the
functional response is assumed to be proportional to v and decreasing with respect
to u:

e(u, v) =
Fmv

κ+ u
.

More advanced Holling’s functional responses (see e.g. Ref. 25) taking into account
the saturation of prey consumption for high prey densities may be used here. How-
ever it would make the analysis more complicated without substantial qualitative
changes in the results.

The shape of the function e reflects the fact that due to an interference com-
petition among spatially grouped predators the efficiency of a foraging individual
predator decreases with the increase of the number of predators arriving at the
same time at a patch of prey (see Ref. 8 where a similar simplistic formula was
used to grasp the effect of predators grouping).

An alternative approach to taking into account the effect of local accumulation
of foraging predators was proposed by Aiseba et al.1 where a threshold density is
introduced in such a way that the prey-taxis vanishes if the density of predators
exceeds such a threshold.

The properties of IPT1 model are compared with that of the following Model
IPT2 in which predators migrate toward the higher concentration of a chemoattrac-
tant secreted by the prey itself (the “smell” of prey) and the rest of the components
of the Model IPT2 are the same as in Model IPT1.

Model IPT2:
ut = du∆u− div(χu∇w), x ∈ Ω, t > 0,
wt = dw∆w − µw + αv, x ∈ Ω, t > 0,

vt = λv
(
1 − v

k

)
− vF0(u), x ∈ Ω, t > 0

with non-negative initial data and homogeneous Neumann boundary conditions.
We introduce the following change of parameters and unknown variables to obtain
a non-dimensional version of the IPT1 model. Assuming that the variables u, w
and v have the same physical dimension and denoting by L the diameter of Ω (i.e.
L := diam(Ω)) we set:

ũ =
u

κ
, w̃ :=

w

k
, ṽ :=

v

k
,

x̃ =
x

L
, t̃ =

du

L2
t, d̃w :=

dw

du
, χ̃ =

χk

du
, F̃m :=

FmL
2

du
,

λ̃ =
λL2

du
, µ̃ =

µL2

du
, F̃ (ũ) =

F̃mũ

1 + ũ
.



September 30, 2016 9:10 WSPC/103-M3AS 1640010

Predator–prey model with diffusion and indirect prey-taxis 2133

Then the non-dimensional version of Model IPT1 reads:

ũt = ∆ũ− div(χ̃ũ∇w̃), x ∈ Ω, t > 0,

w̃t = d̃w∆w̃ − µ̃w̃ + αṽF̃0(ũ), x ∈ Ω, t > 0,

ṽt = λ̃ṽ(1 − ṽ) − ṽF̃ (ũ), x ∈ Ω, t > 0.

To simplify the notation we drop the tilde in the aforementioned system and
finally we obtain:

ut = ∆u − div(χu∇w), x ∈ Ω, t > 0, (1.2)

wt = dw∆w − µw + αvF (u), x ∈ Ω, t > 0, (1.3)

vt = λv(1 − v) − vF (u), x ∈ Ω, t > 0 (1.4)

with

F (u) =
Fmu

1 + u
(1.5)

and boundary conditions

∂u

∂ν
=
∂w

∂ν
= 0, x ∈ ∂Ω (1.6)

and non-negative initial data

u(x, 0) = u0(x), w(x, 0) = w0(x), v(x, 0) = v0(x), x ∈ Ω. (1.7)

Notice that the parameter α has a different interpretation in Model IPT2 than in
Model IPT1, where it is dimensionless. In the latter case to get the non-dimensional
version of IPT2 we set α̃ = αL2

du
and finally we obtain, after dropping the tilde:

ut = ∆u− div(χu∇w), x ∈ Ω, t > 0, (1.8)

wt = dw∆w − µw + αv, x ∈ Ω, t > 0, (1.9)

vt = λv(1 − v) − vF (u), x ∈ Ω, t > 0 (1.10)

with

F (u) =
Fmu

1 + u
.

Systems of two parabolic equations with chemotactic terms coupled to an ordi-
nary differential equations (O.D.E.) have been already studied in the literature
(see for instance Ref. 3 and references therein), Refs. 5 and 16 where a parabolic–
parabolic–O.D.E. system is presented to describe cancer invasion. Two chemotactic
terms appears in the first equation (chemotaxis and hapotaxis) which presents a
logistic growth, the system has been also studied in Ref. 21 where the convergence
of the system to a parabolic–parabolic chemotaxis system is obtained. In Ref. 26,
two biological species complete for the resources and follow a chemical gradient
of a chemoattractant. The chemoattractant is a non-diffusive species produced by
the biological species, the authors prove global existence and convergence to the
homogeneous steady states under suitable assumptions in the coefficients.
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The paper is organized as follows. Section 2 concerns the well-posedness of the
models and existence of global-in-time solutions (Theorem 2.1). In Sec. 3, we point
that there are constant steady states with positive components provided that the
rate of growth of prey population prevails over the mortality caused by predator
at the steady state. Then, using linearization about steady states we give condi-
tions which warrant the local asymptotic stability of such constant steady states
for both models (Theorem 3.1). It turns out that Model IPT1 has substantially
different properties than Model IPT2 which does not present non-constant steady
states while Model IPT1 have them. By using bifurcation theory we obtain that
for sufficiently high values of chemotactic sensitivity or high values of initial mean
value of predator density there are non-constant steady states at least in space
dimension N = 1 (Proposition 3.3). In Sec. 4, we provide with effective conditions
on the initial data and other model parameters for which solutions converge to the
constant steady states (Theorem 4.1).

Along the paper we use the following notation

〈f〉 :=
1
|Ω|

∫
Ω

f

for the average value of function f ∈ L1(Ω).

2. Global Existence of Solutions to IPT Models

In this section, we only consider Model IPT1, since arguments and results for Model
IPT2 are analogous. We denote by W k,p := W k,p(Ω) the usual Sobolev space with
the norm ‖ · ‖k,p and

W 2,p
ν (Ω) =

{
w ∈W 2,p(Ω) :

∂w

∂ν
(x) = 0, x ∈ ∂Ω

}
.

Recall that for p > N, W 1,p ⊂ Cα(Ω) for some α ∈ (0, 1).

Theorem 2.1. Assume that initial data are non-negative and for p > N, u0, v0 ∈
W 1,p(Ω) and w0 ∈W 2,p

ν (Ω). Then there exists a unique solution (u,w, v) to (1.2)–
(1.4) such that

u, v ∈ C([0,∞);W 1,p) and w ∈ C
(
[0,∞);W 2,p

ν (Ω)
)

and

u,w, v ≥ 0 on Ω × [0, T ). (2.1)

Moreover, for any T > 0, u, w ∈ C2,1
x,t (Ω × (0, T )) and

sup
t∈[0,∞)

max{‖u(t)‖∞, ‖w(t)‖∞, ‖v(t)‖∞} <∞. (2.2)

Proof. Let us define the space

XT = {ϕ ∈ C([0, T ];W 1,p) : ϕ(0) = 0, ‖ϕ‖C([0,T ];W 1,p) ≤ R + 1},
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where R is such that

‖u0‖1,p ≤ R (2.3)

and T > 0 will be specified later. We denote by (et∆)t≥0 the heat semigroup in
the space Lp(Ω) with Neumann boundary condition. We first consider an auxiliary
problem with F replaced by its extension F̃ defined by

F̃ (u) = −F (−u) if u < 0 and F̃ (u) = F (u) otherwise.

Notice that F̃ is a smooth globally Lipshitz function. We shall use the Banach fixed
point theorem applied to the mapping Ψ : XT 
→ XT defined in the following way:
for any ũ ∈ XT and fixed v0 ∈ W 1,p there is a unique v̂ ∈ C([0, T ];W 1,p) satisfying

vt = λv(1 − v) − vF̃ (ũ), x ∈ Ω, t ∈ [0, T ]. (2.4)

Indeed the right-hand side of (2.4) is a Lipschitz continuous function defined on the
space W 1,p ⊂ Cα(Ω) for p > N . Next, for (ũ, v̂) there is a unique ŵ such that

ŵ(t) = e(dw∆−µ)tw0 +
∫ t

0

e(dw∆−µ)(t−s)αv̂(s)F̃ (ũ(s))ds (2.5)

and finally applying the parabolic regularity to ŵ we define

Ψ(ũ) = e∆tu0 +
∫ t

0

e∆(t−s)(χ∇ũ(s)∇ŵ(s) + ũ(s)∆ŵ(s))ds. (2.6)

First we shall show that for T small enough:

‖Ψ(ũ)‖C([0,T ];W 1,p) ≤ R+ 1 (2.7)

for any ũ ∈ XT . Indeed using the fact that F has a bounded derivative we infer
that there is M > 0 such that

sup
t∈[0,T ]

‖v̂‖1,p < M (2.8)

uniformly with respect to ũ ∈ XT . Then (1.5) and (2.8) imply that there is a
constant K > 0 which depends on M,F and R such that

‖αv̂F̃ (ũ)‖C([0,T ];W 1,p) ≤ K (2.9)

uniformly for ũ ∈ XT . We shall use the following semigroup estimate24: there is a
constant C such that for k ≥ l, l, k ∈ {0, 1, 2}:

‖e(dw∆−µ)tϕ‖k,q ≤ Ct−
k−l
2 ‖ϕ‖l,q,

ϕ ∈ W l,q if k = 1 and ϕ ∈W l,q
ν for k = 2.

(2.10)

It then follows from (2.10) that for t > 0:

‖ŵ(t)‖2,p ≤ C‖w0‖2,p +
∫ t

0

(t− s)−1/2C‖αv̂(s)F̃ (ũ(s))‖1,pds. (2.11)
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From (2.9), and singular Gronwall’s inequality14 we deduce that there is a con-
stant K1 = K1(K,C, T ) such that

sup
t∈[0,T ]

‖ŵ‖2,p ≤ K1. (2.12)

Now we use again (2.10) in (2.6) to obtain

‖Ψ(ũ)‖1,p ≤ C‖u0‖1,p +
∫ t

0

(t− s)1/2C‖(χ∇ũ(s)∇ŵ(s) + ũ(s)∆ŵ(s))‖0,pds

≤ R+ 4T 1/2CRK1,

where we have used (2.12) and (2.3). Now we may fix T small enough so that
4T 1/2CRK1 ≤ 1 thus Ψ is well defined. Using similar arguments one can prove that
for suitably chosen T , mapping Ψ is also contractive. Thus there exists a fixed point
u ∈ XT of Ψ which uniquely determines v and w by (2.4) and (2.5), respectively.
From the regularity theory of parabolic equations it follows that

u,w ∈ C2,1
x,t (Ω̄ × (0, T )).

The uniqueness of solutions results easily from the regularity of w and Lipschitz
continuity of both function F̃ and the right-hand side of (1.4). A standard extension
argument implies the existence of the maximal existence time Tmax. Let us consider
the equation for u, which reads

ut − ∆u+ χ∇ · (u∇w) = 0. (2.13)

Then we split the nonlinear second-order terms to obtain

ut − ∆u+ χ∇u∇w = −uχ∆w. (2.14)

Since w ∈ C2,1
x,t (Ω × (0, Tmax)) we have that

ũt − ∆ũ+ a(x, t)∇ũ = b(x, t)ũ, (2.15)

where a(x, t) ∈ C1,0
x,t (Ω × (0, Tmax)) and b ∈ C0(Ω × (0, Tmax)). It follows from

parabolic maximum principle and non-negativity of the initial data that

u ≥ 0. (2.16)

The non-negativity of v follows from the representation

v(x, t) = v0 exp
{∫ t

0

h(x, s)ds
}
,

where h = h(t, x) is a bounded function. The non-negativity of w results again from
the maximum principle. The non-negativity of the solution results in F̃ (u) = F (u)
and owing to the uniqueness of solution we infer the existence of the solution to the
original problem.

We are in a position to prove that the solution is global-in-time. To this end we
first deduce, using maximum principle, that ‖w(t)‖∞ is uniformly bounded for all
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t ∈ [0, Tmax) because it holds vF (u) ∈ L∞(Ω×(0, Tmax)). By the classical parabolic
Lq-regularity theory we have that for any q ≥ 2:

w ∈ Lq(0, Tmax : W 2,q(Ω)) ∩W 1,q(0, Tmax : Lq(Ω)). (2.17)

It follows by Lemma 3.3, p. 80 in Ref. 20, that for q > N + 2 we have ∇w ∈
[L∞(Ω×(0, Tmax))]N . Using Moser–Alikakos iterative method2 applied to the scalar
parabolic equation (2.13) one can prove that there is a constant C1 independent on
time such that

sup
t∈[0,Tmax)

‖u(t)‖∞ ≤ C1 max

{
sup

t∈[0,Tmax)

‖u(t)‖1, 1

}
. (2.18)

Many variants of the Moser–Alikakos method are available in the literature. Here we
give only a short sketch adjusted to our case. Upon multiplying (2.13) by u2k−1, k ≥
1, and integrating over Ω one obtains

d

dt

1
2k

∫
Ω

u2k

= −(2k − 1)22−2k

∫
Ω

∣∣∣∇u2k−1
∣∣∣2

+χ(2k − 1)21−k‖∇w‖∞
∫

Ω

u2k−1
∣∣∣∇u2k−1

∣∣∣
≤ −

∫
Ω

∣∣∣∇u2k−1
∣∣∣2 + 2χ‖∇w‖∞

(∫
Ω

∣∣∣u2k−1
∣∣∣2)1/2 (∫

Ω

∣∣∣∇u2k−1
∣∣∣2)1/2

and next using the Gagliardo–Nirenberg inequality one follows lines of proof of
Lemma 9.3.1 in Ref. 6.

Notice that by the Neumann boundary condition it holds
∫
Ω u(t, x)dx =

∫
Ω u0

for t ∈ [0, Tmax), hence by (2.18) u ∈ L∞(Ω × (0, Tmax)). Thanks to (2.17) we
have enough regularity of the coefficients in the parabolic equation (2.14) to apply
Theorem 1.11 in Ref. 20, and infer that also ∇u ∈ L∞(Ω×(0, Tmax)). Directly from
(2.4) we obtain that

v ∈ C([0, Tmax) : W 1,p(Ω))

and hence in light of (2.11):

sup
t∈[0,Tmax)

‖w(t)‖2,p <∞.

Finally we deduce that Tmax = ∞ and the solution is global-in-time. Next we
deduce from (2.18) that

sup
t∈[0,∞)

‖u(t)‖∞ <∞. (2.19)

By comparison with logistic O.D.E. applied to (1.4) we obtain that v is uniformly
bounded in L∞ and

0 ≤ v(·, t) ≤ max
{
1,

(
1 +

(‖v0‖−1
∞ − 1

)
e−µ2t

)−1
}

for t ∈ [0,∞). (2.20)
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On integrating (1.3) over Ω and using (2.20) we easily obtain that

sup
t∈[0,∞)

∫
Ω

w(t) <∞

and now we may use the same argument as in (2.18) to obtain

sup
t∈[0,∞)

‖w(t)‖∞ ≤ ∞. (2.21)

To complete the proof notice that (2.19)–(2.21) imply (2.2).

3. Steady States and Linearization

In this section, we study the steady states to Model IPT1 (1.2)–(1.4) and to Model
IPT2 (1.8)–(1.10) assuming that

∫
Ω u0 := M > 0. It follows from the non-flux

boundary condition (1.6) that

〈u(t)〉 = 〈u0〉 =
M

|Ω| , for t > 0. (3.1)

If F (ū) < λ then it is easy to see that there is only one constant steady state
P 1

1 = (ū, w̄, v̄) to system IPT1 (1.2)–(1.4) with positive components:

ū := 〈u〉, w̄ =
α

µ

(
1 − F (〈u〉)

λ

)
F (〈u〉), v̄ = 1 − F (〈u〉)

λ
(3.2)

and there is only one homogeneous steady state P 2
1 = (ū, w̄, v̄) to system IPT2

(1.8)–(1.10) with

ū = 〈u〉, w̄ =
α

µ

(
1 − F (〈u〉)

λ

)
, v̄ = 1 − F (〈u〉)

λ
. (3.3)

There is also a trivial steady state P0 for both models:

ū = 〈u〉, w̄ = v̄ = 0, (3.4)

which is a unique space of homogeneous steady state provided F (〈u〉) ≥ λ.
Linearization at a homogeneous steady state (ū, w̄, v̄) to Model IPT1 leads to

the following eigenvalue problem:

∆ϕ− χū∆ψ = σϕ, (3.5)

dw∆ψ − µψ + αv̄F ′(ū)ϕ+ αF (ū)η = σψ, (3.6)

−v̄F ′(ū)ϕ+ (F (ū) − λ)η = ση, (3.7)

where (ϕ, ψ, η) ∈ X0 ×X × Y and:

X0 =
{
ϕ ∈W 2,p(Ω) :

∂ϕ

∂ν
= 0,

∫
Ω

ϕ(x)dx = 0
}
,

X =
{
ψ ∈W 2,p(Ω) :

∂ψ

∂ν
= 0

}
, Y = L2(Ω).
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Let {λn}∞n=0 be the sequence of eigenvalues of operator −∆ with homogeneous
Neumann boundary conditions defined on X :

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · (3.8)

and {wn}∞n=0 the corresponding system of orthonormal eigenfunctions in L2(Ω).
Let us define the matrix

An =



−λn χūλn 0

αv̄f1 −(dwλn + µ) αf

−v̄f2 0 r


, (3.9)

where f = F (ū), f1 = f2 = F ′(ū) in Model IPT1 and f = 1, f1 = 0, f2 = F ′(ū) in
the case of Model IPT2 and r = λ− F (ū) − 2v̄λ in both cases.

Proposition 3.1. A complex number σ is an eigenvalue of (3.5)–(3.7) if and only
if there exists n ≥ 1 such that σ is an eigenvalue of matrix (3.9) or for n = 0,
σ ∈ {−µ, r}. Moreover, spectrum of linear operator in (3.5)–(3.7) consist only of
eigenvalues.

Proof. Let ϕ =
∑∞

n=0 ϕnwn, ψ =
∑∞

n=0 ψnwn, η =
∑∞

n=0 ηnwn. On multiplying
each equation in (3.5)–(3.7) by wn and integrating over Ω using the boundary
condition we obtain for n ≥ 1 the following eigenvalue problem

An



ϕn

ψn

ηn


 = σ



ϕn

ψn

ηn


,

where An was defined in (3.9). For n = 0 as a consequence of the condition
∫
Ω
ϕ = 0

we have ϕ0 = 0 which leads to the eigenvalue problem[
−µ −αf
0 r

][
ψ0

η0

]
= σ

[
ψ0

η0

]
.

Using the resolvent equation and testing each equation by wn we easily deduce that
any σ which is not an eigenvalue belongs to the resolvent set which completes the
proof.

The characteristic polynomial of An reads:

pn(σ) = σ3 + a2(λn)σ2 + a1(λn)σ + a0(λn), (3.10)

where

a2(λn) = λn + (µ+ dwλn) − r,

a1(λn) = det Ã− λnr − r(dwλn + µ),

a0(λn) = −r det Ã+ v̄β0λn,

where

det Ã = λn(µ+ dwλn) − v̄Y0λn (3.11)



September 30, 2016 9:10 WSPC/103-M3AS 1640010

2140 J. I. Tello & D. Wrzosek

is the second main minor of matrix An with:

Y0 := αχūf1, (3.12)

β0 := αχūf2f. (3.13)

We are in a position to formulate the main theorem of this section on the linear
stability of the steady states.

Theorem 3.1. Stability conditions of steady states P 1
1 , P

2
1 and P0 are the following:

(1) Steady state P 1
1 in Model IPT1 is locally asymptotically stable if

χαūF ′(ū)
λ

< (1 + dw)min
(

2µ
µ+ F (ū)

, 1
)
. (3.14)

(2) Steady state P 2
1 in Model IPT2 is locally asymptotically stable if

χαūF ′(ū)
λ

< 2(1 + dw)µ. (3.15)

(3) Steady state P0 is locally asymptotically stable if λ < F (ū).

In each of the above cases there exists δ0 > 0 such that if σ is an eigenvalue to
(3.5)–(3.7) then Reσ < −δ0 < 0.

Steady state P0 is unstable provided λ ≥ F (ū). There is K > 0 such that steady
states P 1

1 and P 2
1 are unstable provided

χαū

λ
> K. (3.16)

Proof. We first consider points P 1
1 and P 2

1 . It follows from Routh–Hurwitz theorem
(see e.g. Appendix B.1 in Ref. 25) that roots of (3.10) have negative real parts if
and only if

a2(λn) > 0, a0(λn) > 0, a1(λn)a2(λn) > a0(λn). (3.17)

Notice that a2(λn) > 0 is satisfied as long as r < 0. For the case of P 1
1 and P 2

1 we
have r = F (ū) − λ < 0 and v̄ = −r

λ . By straightforward calculation we check that
a0(λn) = λαχūv̄F ′(ū)λn > 0. Next we define

H(λn) = a1(λn)a2(λn) − a0(λn)

= b3λ
3
n + b2λ

2
n + b1λn + b0,

where
b3 = dw + d2

w,

b2 = µ(1 + 2dw) + r(1 + dw)(−(1 + dw) + Y0/λ),

b1 = µ2 + r2(1 + dw) − r(2µ(1 + dw) − Y0µ/λ− β0/λ),

b0 = −rµ2 + r2µ.

(3.18)

Notice that b3 > 0, b0 > 0 and it is easy to check that b2 > 0 for any r < 0 provided

Y0/λ < 1 + dw. (3.19)
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Moreover, b1 > 0 for any r < 0 provided

Y0µ/λ+ β0/λ < 2µ(1 + dw)

and using definition of Y0 and β0 it follows that

χαū(µf1 + f2f)
λ

< 2µ(1 + dw) (3.20)

and consequently (3.14) follows from (3.20), (3.19) and definition of Y0. Observe
that in the case of the steady state P 2

1 in Model IPT2 we have r = F (ū) − λ < 0
and Y0 = 0 as the consequence of condition f1 = 0. It is easy to check that in this
case b3 > 0, b2 > 0, b0 > 0 and using (3.20) b1 > 0 provided

χαūf2f

λ
< 2µ(1 + dw),

whence (3.15) follows.
Finally in the case of P0 we have that

An =



−λn χūλn 0

0 −(dwλn + µ) αf

0 0 r




and the eigenvalues of An are −λn,−(dwλn +µ) and r. Since λn > 0 for any n ≥ 0
we have that −λn and −(dwλn + µ) are negative.

• If F (ū) > λ then r = λ−F (ū) < 0 and the three eigenvalues of An are negative,
which proves (3).

• If F (ū) = λ then r = 0, which precludes the stability of P0.
• If F (ū) < λ then r > 0 and then also precludes stability.

Finally we shall show that the set of eigenvalues is separated away from the
imaginary axis. To this end assume that σ1(n), σ2(n), σ3(n) are roots of polynomial
pn(σ) in (3.10). We have already checked that for all n ≥ 1 and i = 1, 2, 3 Reσi(n) <
0. By Viete’s formula we have:

σ1(n) + σ2(n) + σ3(n) = −a2(λn) = −(1 + dw)λn + o(λn), (3.21)

σ1(n) · σ2(n) · σ3(n) = −a0(λn) = −rdwλ
2
n + o(λ2

n), (3.22)

where we adopt the following notation limγn→∞
o(γn)

γn
= 0 and limγn→∞

O(γn)
γn

=
const. It follows from (3.21)–(3.22) that exactly two roots, say σ2(n) and σ3(n)
satisfy σ2(n) = O(λn) and σ3(n) = O(λn) and next we deduce from (3.22) that
there is σ̄ such that

lim
n→∞σ1(n) = σ̄ < 0.

Hence there exists δ0 > 0 such that for any n ≥ 0 and i = 1, 2, 3, Reσi(n) < −δ0 <
0. Now we are in a position to use Chap. 11 in Ref. 33, to deduce the local linear
stability of steady states P 1

1 , P
2
1 and P0 under conditions listed in the statement of

the theorem.
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To prove instability of P 1
1 it remains to show using again the Routh–Hurwitz

criterion (3.17) that for fixed λn, and suitable values of parameters the coefficient
a1(λn) may be negative. To this end notice that the negative component in (3.11)
reads

−v̄Y0λn =
(αχū

λ

)
rF ′(ū)λn

and for sufficiently big αχū
λ there is a1(λn) < 0. To prove instability of P 2

1 it remains
to notice that in this case Y0 = 0 and using (3.18) we have b1 < 0 provided

β0

λ
=

(αχū
λ

)
F (ū)F ′(ū)

is big enough.

To show that there are non-constant steady states to Model IPT1 we shall
consider an auxiliary system of two nonlinear elliptic equations. Notice that using
(1.4) the steady state problem for system (1.2)–(1.4) may be reduced to the system
of two equations:

∆ū− div(ūχ∇w̄) = 0, x ∈ Ω, (3.23)

dw∆w̄ − µw̄ + α

(
1 − F (ū)

λ

)
F (ū) = 0, x ∈ Ω (3.24)

with no-flux boundary condition. Let us denote

Γ(u) =
(

1 − F (u)
λ

)
F (u)

and

γ := Γ′(ū) =
(

1 − 2F (ū)
λ

)
F ′(ū). (3.25)

If F (ū) ≤ λ then any steady state of (3.23)–(3.24) defines the first two component
of steady state of Model IPT1 and vice versa. Linearization of system (3.23)–(3.24)
at the constant steady state (ū, w̄) leads to the following eigenvalue problems:

∆φ− χū∆ψ = σφ, (3.26)

dw∆ψ − µψ + αγφ = σψ, (3.27)

where (φ, ψ) ∈ X0 ×X and

X0 =
{
φ ∈ W 2,p(Ω) :

∂φ

∂ν
= 0,

∫
Ω

φ(x)dx = 0
}
,

X =
{
φ ∈ W 2,p(Ω) :

∂ψ

∂ν
= 0

}
.

Let {λn}∞n=1 be the sequence of eigenvalues of −∆ defined in (3.8). Let us define
the matrix

Bn =

[
−λn χūλn

αγ −λndw − µ

]
. (3.28)
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Proposition 3.2. A complex number σ is an eigenvalue to problem (3.26)–(3.27)
if and only if there exists n ≥ 1 such that σ is the eigenvalue of matrix Bn or
σ = −µ. Moreover, Re σ < 0 if and only if

λ1 >
αγχū− µ

dw
. (3.29)

Proof. The first part of the proposition is based on similar arguments as in the
proof of Theorem 3.1 (see also Ref. 29 or Ref. 37). It is easy to verify that for n ≥ 1
it holds

trBn = −(1 + dw)λn − µ < 0 and detBn = λn(λndw + µ− γαχū)

and detBn > 0 for all n ≥ 1 if and only if (3.29) holds.

Notice that the stationary problem (3.23)–(3.24) corresponds to the following
evolutionary system:

Ut = ∆U − div(Uχ∇W ), x ∈ Ω, t > 0, (3.30)

Wt = dw∆W − µW + α

(
1 − F (U)

λ

)
F (U), x ∈ Ω, t > 0, (3.31)

which has one constant steady state (ū, w̄) with positive components. This system
may be interpreted as a simplified version of the original model in which prey
population stabilizes fast enough so that it is justified to assume vt ≈ 0. Moreover,
letting λ→ ∞ we obtain the chemotaxis model with nonlinear signal kinetics which
was mentioned in Ref. 15. It corresponds to the case where the prey density is close
to the steady state v ≡ 1 and the total system is reduced to the first two equations.
Standard linearized stability analysis for dynamical system generated by (3.30)
and (3.31) leads to the following conclusion.

Corollary 3.1. If (3.29) holds then constant steady state (ū, w̄) is locally asymp-
totically stable for the dynamical system generated by (3.30) and (3.31).

Remark 3.1. It is worth noticing that (3.29) is satisfied whenever γ < 0 and owing
to (3.25) it is equivalent to the condition F (ū) > λ

2 . From the point of view of the
linearized stability our case γ < 0, χ > 0 is analogous to the case of chemorepulsion
i.e. χ < 0 and γ > 0.

If γ > 0 then it is convenient to choose χ as a bifurcation parameter and then
condition (3.29) for stability of S0 = (ū, w̄) reads

χ < χ1 :=
λ1dw + µ

γαū
.

We are now in a position to adapt the result from Theorem 2.4 of Ref. 37, derived
in the case of one space dimension.

Proposition 3.3. Assume N = 1 and M > 0. Then for any χ > χ1 there are
non-constant steady states with the mass M.
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It is proved in Theorem 2.4 of Ref. 37, using bifurcation theory that each
component of such a non-constant steady state may be a monotone increasing
or decreasing function. However using homogeneous Neumann boundary condi-
tion and periodic extension or reflection of a monotone function a non-monotone
steady state may be constructed for appropriately enlarged domain Ω.

It turns out that Model IPT1 has substantially different properties from Model
IPT2 as the latter does not have non-constant steady states. Indeed notice first
that in the case of Model IPT2 reduction to the system of two equations leads to:

∆ū − div(ūχ∇w̄) = 0, x ∈ Ω, (3.32)

dw∆w̄ − µw̄ + α

(
1 − F (ū)

λ

)
= 0, x ∈ Ω (3.33)

and after the linearization about constant steady state with positive components we
obtain the same matrix as in (3.28) with only difference in γ = −α

µF
′(ū) < 0 instead

of (3.25). In light of (3.29) it follows that the space-homogeneous steady state is
linearly locally asymptotically stable for all set of parameters and in particular it
does not lose stability when χ is big enough. On the other hand it turns out that
the solution to (3.32) and (3.33) is uniquely determined. Indeed using standard
argument we infer from (3.32) that there is � > 0 such that

u = �eχw.

Then any nonzero steady state of (3.32) and (3.33) satisfies the following semilinear
elliptic equation

−∆w + µw +R(w) = 0 on Ω, (3.34)

with no-flux boundary condition where R(w) = α
(

F (�eχw)
λ − 1

)
. Uniqueness of

solutions to (3.34) results from the fact that w 
→ µw+R(w) for w > 0 is a strictly
increasing function and classical arguments for monotone operators may be applied.

4. Asymptotic Behavior

In this section, we study the asymptotic behavior of solutions to Model IPT1, (1.2)–
(1.4) and Model IPT2, (1.8)–(1.10) for bounded and open domain with regular
boundary Ω ⊂ R

N for N ≤ 2. We assume in both cases that

λ > Fm. (4.1)

The previous assumption guarantees the existence of a unique positive steady state
denoted by P 1

1 = (ū, w̄, v̄) for Model IPT1 (P 2
1 for Model IPT2). The steady state

is an attractor for non-negative initial data provided the initial conditions and
parameters satisfy additional conditions listed below:

• the initial data u0 is bounded and non-negative, i.e. satisfies

0 ≤ u0(x) ≤ ‖u0‖L∞(Ω) <∞, (4.2)
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• there exists a positive constant v0 > 0 such that the initial data v0 satisfies

v0 ≤ v0(x) ≤ 1, (4.3)

• bounded and positive initial data w0 satisfies

0 ≤ w0(x) ≤ wmax <∞, (4.4)

• furthermore, for the Model IPT1, u0 satisfies

max
{
c∗〈u0〉
2dw

,
〈u0〉 + 2

µ

}
8α2F 2

mχ
2

µ

(
1 +

F 2
m

λmin{λv0, (λ− Fm)}
)
< 1, (4.5)

• and for the Model IPT2, u0 satisfies

max
{
χ2c∗〈u0〉

2dw
,
χ2(〈u0〉 + 2)

µ

}
8α2

µλ

F 2
m

min{λv0, (λ− Fm)} < 1, (4.6)

where c∗ is some constant which depends on constants in the Poincaré inequality
and the Gagliardo–Nirenberg inequality.

Theorem 4.1. Under assumptions (4.1)–(4.4) and space dimension N ≤ 2, u0

satisfying (4.5) for the IPT1 model or (4.6) for the IPT2 model, the solution
satisfies:

u → 〈u0〉 in Lp(Ω) as t→ ∞,

v → v̄ in Lp(Ω) as t→ ∞,

w → w̄ in Lp(Ω) as t→ ∞
for any p ∈ [1,∞), where w̄ and v̄ are defined in (3.2) and (3.3) for Model IPT1
and Model IPT2, respectively.

The proof of the theorem is divided into several steps. We first obtain a set
of a priori estimates and using an energy method we obtain the wished stability
result. The computations to obtain the estimates for u and v are the same for both
models, therefore we only present them once.

Lemma 4.1. Under assumptions of Theorem 4.1, (4.1) and (4.3) we have that

1 ≥ v ≥ min
{
v0, 1 − Fm

λ

}
.

Proof. Since F (u) = Fmu/(1 + u) ≤ Fm we have that

vt ≥ v(λ − Fm − λv),

maximum principle and assumption (4.3) give us the second inequality. To end the
proof, we notice that F (u) ≥ 0 and we solve the inequality

vt ≤ λv(1 − v)

to obtain

v ≤ max{1, sup{v0}} = 1.
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Lemma 4.2. Under assumptions of Theorem 4.1 and (4.4):

• For the Model IPT1, we have that

0 ≤ w ≤ max{‖w0‖L∞(Ω), αFm/µ}
for any t > 0.

• For the Model IPT2, we have that

0 ≤ w ≤ 1
µ

max{‖w0‖L∞(Ω), α/µ}

for any t > 0.

Proof. We first consider the Model IPT1 i.e. w satisfies

wt − dw∆w + µw = αvF (u), x ∈ Ω, t > 0. (4.7)

Thanks to (2.16) we have F (u) ∈ [0, Fm], (4.4), Lemma 4.1 and maximum principle
it results

0 ≤ w ≤ 1
µ

max{‖w0‖L∞(Ω), αFm‖v‖L∞(Ω)}.

The upper bound of v obtained in the previous lemma ends the proof for Model
IPT1. For second model, maximum principle gives

0 ≤ w ≤ 1
µ

max{‖w0‖L∞(Ω), α‖v‖L∞(Ω)}.

Lemma 4.2 ends the proof.

Lemma 4.3. Under assumptions of Theorem 4.1 and (4.4), we have that:

• the solution to Model IPT1 satisfies

d

dt

1
2

∫
Ω

|∇w|2 + dw

∫
Ω

|∆w|2 +
µ

2

∫
Ω

|∇w|2

≤ α2F 2
m

µ

∫
Ω

|∇v|2
v

+
α2F 2

m

µ

∫
Ω

|∇u|2
(1 + u)4

, (4.8)

• the solution to Model IPT2 satisfies

d

dt

1
2

∫
Ω

|∇w|2 + dw

∫
Ω

|∆w|2 +
µ

2

∫
Ω

|∇w|2 ≤ α2

2µ

∫
Ω

|∇v|2
v

. (4.9)

Proof. We first consider the Model IPT1 and multiply Eq. (1.3) by −∆w and
integrate by parts over Ω to obtain

d

dt

1
2

∫
Ω

|∇w|2 + dw

∫
Ω

|∆w|2 + µ

∫
Ω

|∇w|2 = −α
∫

Ω

vF (u)∆w.
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Since

−α
∫

Ω

vF (u)∆w = α

∫
Ω

F (u)∇v∇w + αFm

∫
Ω

v

(1 + u)2
∇u∇w

and |F (u)| ≤ Fm, |v| ≤ 1 we have, thanks to the Young inequality

−α
∫

Ω

vF (u)∆w ≤ α2F 2
m

µ

∫
Ω

|∇v|2 +
α2F 2

m

µ

∫
Ω

|∇u|2
(1 + u)4

+
µ

2

∫
Ω

|∇w|2.

We now combine both identities to obtain
d

dt

1
2

∫
Ω

|∇w|2 + dw

∫
Ω

|∆w|2 +
µ

2

∫
Ω

|∇w|2

≤ α2F 2
m

µ

∫
Ω

|∇v|2 +
α2F 2

m

µ

∫
Ω

|∇u|2
(1 + u)4

.

Since 1/v ≥ 1, the proof of (4.8) is completed.
To prove (4.9) we proceed in the same way. We multiply Eq. (1.9) by −∆w and

integrate by parts over Ω and right-hand side term satisfies

−α
∫

Ω

v∆w = α

∫
Ω

∇v∇w ≤ α2

2µ

∫
Ω

|∇v|2 +
µ

2

∫
Ω

|∇w|2.

Since 1/v ≥ 1 we have ∫
Ω

|∇v|2 ≤
∫

Ω

|∇v|2
v

and

−α
∫

Ω

v∆w ≤ α2

2µ

∫
Ω

|∇v|2
v

+
µ

2

∫
Ω

|∇w|2.

The rest of the terms are treated as in the first case.

Lemma 4.4. Under assumptions of Theorem 4.1 we have that

d

dt

∫
Ω

∣∣∣∣∇vv
∣∣∣∣
2

≤ −λ
∫

Ω

|∇v|2
v

+
F 2

m

min{λv0, (λ− Fm)}
∫

Ω

|∇u|2
(1 + u)4

. (4.10)

Proof. We divide Eq. (1.4) by v and derivate the resulting equation to obtain
d

dt

∇v
v

= −λ∇v − Fm

(1 + u)2
∇u.

Multiplying by ∇v/v and after integration over Ω we get

d

dt

1
2

∫
Ω

∣∣∣∣∇vv
∣∣∣∣
2

= −λ
∫

Ω

|∇v|2
v

− Fm

∫
Ω

∇u∇v
v(1 + u)2

.

Since 1/(u+ 1) < 1 and v ≥ min{v0, (λ− Fm)/λ}, by Young inequality

−Fm
∇u∇v
v(1 + u)2

≤ F 2
m

2λ
|∇u|2

v(1 + u)4
+
λ

2
|∇v|2
v

≤ F 2
m

2λmin{v0, (λ − Fm)/λ}
|∇u|2

(1 + u)4
+
λ

2
|∇v|2
v
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which implies

d

dt

1
2

∫
Ω

∣∣∣∣∇vv
∣∣∣∣
2

≤ −λ
2

∫
Ω

|∇v|2
v

+
F 2

m

2λmin{v0, (λ− Fm)/λ}
∫

Ω

|∇u|2
(1 + u)4

.

By using λmin{v0, (λ − Fm)/λ} = min{λv0, (λ − Fm)} and multiplying by 2, we
end the proof.

Lemma 4.5. Under assumptions of Theorem 4.1, for N ≤ 2 we have

d

dt

∫
Ω

(u + 1)(ln(u+ 1) − 1) +
1
4

∫
Ω

|∇u|2
u+ 1

≤ χ2c∗〈u0〉‖∆w‖2
L2(Ω) + χ2(〈u0〉 + 2)

∫
Ω

|∇w|2, (4.11)

where c∗ is defined in (4.21).

Proof. We multiply Eq. (1.2) by ln(u+ 1) and integrate over Ω to obtain

d

dt

∫
Ω

(u + 1)(ln(u+ 1) − 1) +
∫

Ω

|∇u|2
u+ 1

= χ

∫
Ω

u

u+ 1
∇u∇w. (4.12)

We consider the right-hand side term, after integration by parts and thanks to
non-negativity of u and the Young inequality we have

χ

∫
Ω

u

u+ 1
∇u∇w = χ

∫
Ω

∇(u− ln(u + 1))∇w

= −χ
∫

Ω

(u− ln(u+ 1))∆w

= −χ
∫

Ω

u∆w − χ

∫
Ω

∇u∇w
u+ 1

≤ −χ
∫

Ω

u∆w + χ2

∫
Ω

|∇w|2 +
1
4

∫
Ω

|∇u|2
u+ 1

. (4.13)

In order to bound the term u∆w in an appropriate norm we make the following
decomposition

u = (u+ 1)
1
2 (u + 1)

1
2 − 1

=
(
(u+ 1)

1
2 −

〈
(u+ 1)

1
2

〉)2

+ 2(u+ 1)
1
2

〈
(u+ 1)

1
2

〉
−

〈
(u+ 1)

1
2

〉2

− 1.

Since −
〈
(u+ 1)

1
2

〉2

− 1 is independent of x we have

−
∫

Ω

(〈
(u + 1)

1
2

〉2

+ 1
)

∆w = 0

and therefore

−χ
∫

Ω

u∆w = −χ
∫

Ω

(
(u+ 1)

1
2 −

〈
(u+ 1)

1
2

〉)2

∆w

− 2χ
〈
(u+ 1)

1
2

〉 ∫
Ω

(u+ 1)
1
2 ∆w.
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Notice that 〈
(u + 1)

1
2

〉
≤ 〈(u+ 1)〉 1

2 ≤ 〈u+ 1〉 1
2 ≤ (〈u0〉 + 1)

1
2

and after integration by parts in the last term it follows

2χ
〈
(u+ 1)

1
2

〉 ∣∣∣∣
∫

Ω

(u+ 1)
1
2 ∆w

∣∣∣∣ ≤ χ(〈u0〉 + 1)
1
2

∣∣∣∣
∫

Ω

∇u
(u + 1)

1
2
∇w

∣∣∣∣
≤ 1

4

∫
Ω

|∇u|2
u+ 1

+ χ2(〈u0〉 + 1)
∫

Ω

|∇w|2. (4.14)

Then

−χ
∫

Ω

u∆w ≤ −χ
∫

Ω

(
(u+ 1)

1
2 −

〈
(u+ 1)

1
2

〉)2

∆w

+
1
4

∫
Ω

|∇u|2
u+ 1

+ χ2(〈u0〉 + 1)
∫

Ω

|∇w|2. (4.15)

The other term on the right-hand side is treated below

−χ
∫

Ω

(
(u+ 1)

1
2 −

〈
(u+ 1)

1
2

〉)2

∆w

≤ 1
4〈u0〉c∗

∥∥∥(u + 1)
1
2 −

〈
(u+ 1)

1
2

〉∥∥∥4

L4(Ω)
+ χ2c∗〈u0〉‖∆w‖2

L2(Ω), (4.16)

where c∗ is a positive constant defined in (4.21).
Since N ≤ 2 we have that, thanks to the Gagliardo–Nirenberg inequality we

know that for any z ∈ H1(Ω):

‖z‖L4(Ω) ≤ CGN‖z‖ 1
2
L2(Ω)‖z‖

1
2
W 1,N (Ω)

≤ CGN |Ω| 2−N
4 ‖z‖ 1

2
L2(Ω)‖z‖

1
2
H1(Ω) (4.17)

and by Poincaré inequality, we have that

‖z − 〈z〉‖2
H1(Ω) ≤ CP ‖∇z‖2

L2(Ω). (4.18)

We apply (4.17) to the term (u+ 1)
1
2 −

〈
(u+ 1)

1
2

〉
to obtain

∥∥∥(u+ 1)
1
2 −

〈
(u+ 1)

1
2

〉∥∥∥4

L4(Ω)

≤ C4
GN |Ω|2−N

∥∥∥(u+ 1)
1
2 −

〈
(u+ 1)

1
2

〉∥∥∥2

L2(Ω)

∥∥∥(u+ 1)
1
2 −

〈
(u + 1)

1
2

〉∥∥∥2

H1(Ω)
.

Note that∥∥∥(u+ 1)
1
2 −

〈
(u+ 1)

1
2

〉∥∥∥2

L2(Ω)
=

∫
Ω

(u+ 1) −
〈
(u+ 1)

1
2

〉2

≤ |Ω|〈u〉

and thanks to (4.18) it follows∥∥∥(u+ 1)
1
2 −

〈
(u + 1)

1
2

〉∥∥∥2

H1(Ω)
≤ CP

∥∥∥∇(u+ 1)
1
2

∥∥∥2

L2(Ω)
=
CP

4

∫
Ω

|∇u|2
u+ 1

(4.19)
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and it entails∥∥∥(u + 1)
1
2 −

〈
(u+ 1)

1
2

〉∥∥∥4

L4(Ω)
≤ C4

GNCP |Ω|3−N 〈u0〉
4

∫
Ω

|∇u|2
u+ 1

. (4.20)

Then, we define the positive constant c∗:

c∗ :=
C4

GNCP |Ω|3−N

4
, (4.21)

where CGN is the constant given by the Gagliardo–Nirenberg inequality and CP is
the constant given in (4.18).

Next we use (4.20) in (4.16) to obtain

−χ
∫

Ω

(
(u+ 1)

1
2 −

〈
(u+ 1)

1
2

〉)2

∆w ≤ 1
4

∫
Ω

|∇u|2
u+ 1

+ χ2c∗〈u0〉‖∆w‖2
L2(Ω). (4.22)

Thanks to (4.22) and (4.15) we obtain

−χ
∫

Ω

u∆w ≤ 1
2

∫
Ω

|∇u|2
u+ 1

+ χ2c∗〈u0〉‖∆w‖2
L2(Ω) + χ2(〈u0〉 + 1)

∫
Ω

|∇w|2, (4.23)

which ends the proof by substitution into (4.13).

Lemma 4.6. Under assumptions of Theorem 4.1 we have that∫
Ω

u(lnu− 1) +
∫

Ω

|∇w|2 +
∫

Ω

∣∣∣∣∇vv
∣∣∣∣
2

+
∫ ∞

0

∫
Ω

|∇w|2 +
∫ ∞

0

∫
Ω

|∇u|2
u+ 1

≤ C.

Proof. We first consider IPT1 model. We define the constant A satisfying:

A > max
{
χ2c∗〈u0〉

2dw
,
χ2(〈u0〉 + 2)

µ

}
,

A
2α2Fm

µ

(
1 +

F 2
m

λmin{λv̄0, (λ− Fm)}
)
<

1
4
.

Notice that under assumption (4.5) it is possible to find such A satisfying the
previous inequalities. Let B defined by

B :=
2α2F 2

m

µλ
A

which implies

χ2c∗〈u0〉 − 2dwA < 0, χ2(〈u0〉 + 2) −Aµ < 0, (4.24)

2α2F 2
mA

µ
− λB = 0. (4.25)

We multiply (4.8) by 2A, (4.10) by B and we add both expressions to (4.11) to
obtain

d

dt

[∫
Ω

u(lnu− 1) +A

∫
Ω

|∇w|2 +B

∫
Ω

∣∣∣∣∇vv
∣∣∣∣
2
]
≤ −1

4

∫
Ω

|∇u|2
u+ 1

+ (χ2c∗〈u0〉 − 2dwA)
∫

Ω

|∆w|2 + (χ2(〈u0〉 + 2) −Aµ)
∫

Ω

|∇w|2
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+
(

2α2F 2
mA

µ
− λB

) ∫
Ω

|∇v|2
v

+
(

2α2F 2
mA

µ
+

BF 2
m

min{λv0, (λ− Fm)}
)

×
∫

Ω

|∇u|2
(1 + u)4

.

Since

2α2F 2
mA

µ
+

BF 2
m

min{λv0, (λ− Fm)} = A
2α2F 2

m

µ

(
1 +

F 2
m

λmin{λv0, (λ− Fm)}
)

and

max
{
χ2c∗〈u0〉

2dw
,
χ2(〈u0〉 + 2)

µ

}
8α2F 2

m

µ

(
1 +

F 2
m

λmin{λv0, (λ− Fm)}
)
< 1,

we have that there exists ε > 0 such that

A
2α2F 2

m

µ

(
1 +

F 2
m

λmin{λv0, (λ− Fm)}
)
− 1

4
< −ε.

After integration, thanks to (4.24) and (4.25) we have that∫
Ω

u(lnu− 1) +
∫

Ω

|∇w|2 +
∫

Ω

∣∣∣∣∇vv
∣∣∣∣
2

+
∫ ∞

0

∫
Ω

|∇w|2 +
∫ ∞

0

∫
Ω

|∇u|2
u+ 1

≤ C.

For Model IPT2 we proceed in the same way, with the following constants:

A > max
{
χ2c∗〈u0〉

2dw
,
χ2(〈u0〉 + 2)

µ

}
,

A
8α2

µλ

F 2
m

min{λv0, (λ− Fm)} < 1

and

B :=
α2

µλ
A.

Notice that under assumption (4.6) it is possible to find such A satisfying the
previous inequalities.

Corollary 4.1. Thanks to Lemma 4.6, integrating in (4.10) and (4.8) we have:∫ ∞

0

∫
Ω

|∇v|2
v

≤ C, (4.26)

∫
Ω

|∇w|2 +
∫ ∞

0

∫
Ω

|∆w|2 ≤ C. (4.27)

It follows by Lemma 4.1 that v ≥ 1 − Fm

λ and then∫ ∞

0

∫
Ω

|∇v|2 ≤ C. (4.28)
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Lemma 4.7. Under assumptions of Theorem 4.1, for N ≤ 2 we have that∫ ∞

0

∫
Ω

|∇wt|2 +
∫

Ω

|∆w|2 ≤ C. (4.29)

Proof. On multiplying Eq. (1.3) by −∆wt and integrating by parts we obtain∫
Ω

|∇wt|2 +
d

dt

dw

2

∫
Ω

|∆w|2 +
d

dt

µ

2

∫
Ω

|∇w|2

= α

∫
Ω

F (u)∇v∇wt +
∫

Ω

αFmv

(u+ 1)2
∇u∇wt.

As in Lemma 4.3 we find the following bound

α

∫
Ω

F (u)∇v∇wt ≤ α2F 2
m

∫
Ω

|∇v|2
v

+
1
4

∫
Ω

|∇wt|2

and ∫
Ω

αFmv

(u+ 1)2
∇u∇wt ≤ α2F 2

m

∫
Ω

|∇u|2
(1 + u)2

+
1
4

∫
Ω

|∇wt|2.

Hence,

1
2

∫
Ω

|∇wt|2 +
d

dt

dw

2

∫
Ω

|∆w|2 +
d

dt

1
2

∫
Ω

|∇w|2

≤ α2F 2
m

∫
Ω

|∇v|2
v

+ α2F 2
m

∫
Ω

|∇u|2
(1 + u)2

.

After integration, the result is a consequence of Lemma 4.6, (2.16) and (4.26).

Lemma 4.8. Under assumptions of Theorem 4.1 we have that∫
Ω

u2 +
∫ ∞

0

∫
Ω

|∇u|2 ≤ c.

Proof. We first notice that∫
Ω

u2 =
∫

Ω

|u− 〈u〉|2 +
1
|Ω|

∣∣∣∣
∫

Ω

u

∣∣∣∣
2

.

We multiply Eq. (1.2) by u and integrate over Ω to obtain

d

dt

1
2

∫
Ω

u2 +
∫

Ω

|∇u|2 = χ

∫
Ω

u∇u∇w. (4.30)

Taking into account

χ

∫
Ω

u∇u∇w = χ

∫
Ω

(u− 〈u0〉)∇u∇w + χ〈u0〉
∫

Ω

∇u∇w

with

χ〈u0〉
∫

Ω

∇u∇w ≤ 1
4

∫
Ω

|∇u|2 + χ2〈u0〉2
∫

Ω

|∇w|2
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and using the Young inequality we arrive at

χ

∫
Ω

(u− 〈u0〉)∇u∇w ≤ 1
4

∫
Ω

|∇u|2 + χ2

∫
Ω

(u− 〈u0〉)2|∇w|2

≤ 1
4

∫
Ω

|∇u|2 + ε

∫
Ω

(u − 〈u0〉)3 + C(ε)
∫

Ω

|∇w|6.

By the Gagliardo–Nirenberg inequality we have that for any z ∈ H1(Ω):

‖z‖L3(Ω) ≤ C 1
3
‖z‖ 1

3
L1(Ω)‖z‖

2
3
W 1,N(Ω).

Setting z = u− 〈u0〉 we obtain

∫
Ω

(u− 〈u0〉)3 ≤ C3
1
3
〈u0〉C(Ω)

(∫
Ω

|∇u|N
) 2

N

≤ C(Ω, 〈u0〉, C 1
3
, N)

∫
Ω

|∇u|2.

By Lemmas 4.6 and 4.7 we know that ‖∆w‖L2(Ω) and ‖∇w‖L2(Ω) are uniformly
bounded in time, hence using the Sobolev embedding we find∫

Ω

|∇w|6 ≤ C(Ω)
(∫

Ω

|∆w|2 +
∫

Ω

|∇w|2
)3

≤ c

(∫
Ω

|∆w|2 +
∫

Ω

|∇w|2
)
.

Taking ε small enough, we get

χ

∫
Ω

u∇u∇w ≤ 1
2

∫
Ω

|∇u|2 + c′
(∫

Ω

|∆w|2 +
∫

Ω

|∇w|2
)
. (4.31)

Using the previous inequality in (4.30) we obtain

d

dt

∫
Ω

u2 +
∫

Ω

|∇u|2 ≤ 1
2

∫
Ω

|∇u|2 + c′
(∫

Ω

|∆w|2 +
∫

Ω

|∇w|2
)
. (4.32)

It remains to integrate the last inequality over (0,∞) and apply Lemma 4.6 and
(4.27) to complete the proof.

Lemma 4.9. Under assumptions of Theorem 4.1 we have that,∫
Ω

|u− 〈u0〉|2 → 0 as t→ ∞.

Proof. We consider a function k : [0,∞) → R+ such that:

(i) k ≥ 0,
(ii)

∫ ∞
0
k = c0 <∞,

and either (iii1) or (iii2):

(iii1) |k′| ≤ c1 <∞,

(iii2) |k(t+ s) − k(t)| ≤ ε(t) for all s > 0, where ε(t) → 0 as t→ ∞,
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then, thanks to Lemma 5.1 in Ref. 10, we obtain that

k(t) → 0 as t→ ∞.

We define the function

k1(t) :=
∫

Ω

(u − 〈u0〉)2.

Then, thanks to Lemma 4.8 and the Poincaré inequality k1 satisfies (ii). To prove
(iii2) we proceed as follows:

d

dt
k1(t) = 2

∫
Ω

ut(u− 〈u0〉) = 2
∫

Ω

uut =
d

dt

∫
Ω

u2.

By (4.32) we have that

d

dt

∫
Ω

u2 ≤ −1
2

∫
Ω

|∇u|2 + c′
(∫

Ω

|∆w|2 +
∫

Ω

|∇w|2
)
,

integrating over (t, t+ s) we obtain∫ t+s

t

[
d

dt

∫
Ω

u2

]
=

∫
Ω

u2(t+ s) −
∫

Ω

u2(t)

and then ∫
Ω

u2(t+ s) −
∫

Ω

u2(t) ≤ −1
2

∫ t+s

t

∫
Ω

|∇u|2

+ c′
∫ t+s

t

∫
Ω

|∆w|2 + c′
∫ t+s

t

∫
Ω

|∇w|2.

In the same way as (4.32) we may obtain the inequality

d

dt

∫
Ω

u2 ≥ −1
2

∫
Ω

|∇u|2 − c′
(∫

Ω

|∆w|2 +
∫

Ω

|∇w|2
)

which give us, after integration∣∣∣∣
∫

Ω

u2(t+ s) −
∫

Ω

u2(t)
∣∣∣∣ ≤

∫ t+s

t

∫
Ω

|∇u|2 + c′
∫ t+s

t

∫
Ω

|∆w|2 + c′
∫ t+s

t

∫
Ω

|∇w|2.

Now we may set

ε(t) :=
∫ ∞

t

∫
Ω

(
|∇u|2 + c′

∫
Ω

|∆w|2 + c′
∫

Ω

|∇w|2
)
.

In light of Lemmas 4.6–4.8 we have that ε(t) → 0 as t→ ∞ then, k1 satisfies (iii2).
Due to the positivity of k1 and the Cauchy–Schwartz inequality we may apply
Ref. 10 to end the proof.
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Corollary 4.2. Under assumptions of Theorem 4.1 we have that, for any p <∞:

‖u− 〈u0〉‖Lp(Ω) → 0 as t→ ∞.

Proof. We notice that, for any z ∈ L∞(Ω) we have that∫
Ω

zp ≤ C‖z‖L2(Ω)‖z‖p−1
L∞(Ω),

as a consequence of the previous lemma we prove the convergence for any p <∞.

Lemma 4.10. Under assumptions of Theorem 4.1 we have that, for any p ∈ [1,∞):∫
Ω

|w(t) − 〈w(t)〉|p → 0 as t→ ∞.

Proof. As in the previous lemma we consider the function

k2(t) :=
∫

Ω

|w(t) − 〈w(t)〉|p.

Notice that k2 ≥ 0 and thanks to the Poincaré inequality and Lemma 4.6:∫ ∞

0

k2(t) ≤ Cp‖w‖p−2
L∞(Ω)

∫ ∞

0

∫
Ω

|∇w|2 ≤ C.

Since

d

dt
k2(t) = p

∫
Ω

(wt − 〈wt〉)|w − 〈w〉|p−2(w − 〈w〉)

and thanks to Lemma 4.2 and boundedness of w we obtain the upper bound for
|k′| in terms of ‖wt‖L1(Ω), i.e.∣∣∣∣ ddtk2(t)

∣∣∣∣ ≤ c

∫
Ω

|wt| ≤ Cα + dw

∫
Ω

|∆w|,

where Cα is some constant depending on Fm, α and supt>0 ‖w(t)‖L∞(Ω). Finally
note that k2 satisfies (iii1) because∫

Ω

|∆w| ≤ 1
2

+
1
2

∫
Ω

|∆w|2 ≤ C <∞

which ends the proof.

In order to finish the proof of Theorem 4.1, we have to obtain the convergence
of

∫
Ω
wdx. We first study the convergence of the function F (u).

Lemma 4.11. ∫ ∞

0

∫
Ω

|F (u) − F (〈u0〉)|2 ≤ C <∞.
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Proof. The proof is a consequence of the mean value theorem, Poincaré inequality
and Lemma 4.8:∫ ∞

0

∫
Ω

|F (u) − F (〈u0〉)|2 ≤ ‖F ′‖2
L∞

∫ ∞

0

∫
Ω

|u− 〈u0〉|2

≤ ‖F ′‖2
L∞

∫ ∞

0

∫
Ω

|∇u|2 ≤ C <∞.

Lemma 4.12. Under assumptions of Theorem 4.1 we have that, for any p ∈ [1,∞):∫
Ω

∣∣∣∣v − 1 +
1
λ
F (〈u0〉)

∣∣∣∣
p

→ 0 as t→ ∞.

Proof. Let y be the solution to the logistic equation

y′ = λy

(
1 − 1

λ
F (〈u0〉) − y

)
.

Thanks to assumption (4.1) we have that

1 − 1
λ
F (〈u0〉) > 0

and for y(0) > 0, it is well known that

y(t) → 1 − 1
λ
F (〈u0〉) exponentially, as t→ +∞. (4.33)

We now consider Eq. (1.4):

d

dt
v = λv

(
1 − v − 1

λ
F (u)

)
.

Then
d

dt
(v − y) = (v − y)(λ − λ(v + y)) − vF (u) + yF (〈u0〉)

= (v − y)(λ − λ(v + y) − F (〈u0〉)) − v(F (u) − F (〈u0〉)).
Notice that F (u) ≤ Fm for any u ≥ 0 and therefore λ− F (u) ≥ λ− Fm. In view of
(1.4) we claim that v(t) ≥ 1 − Fm/λ for t large enough. Since y0 > 0 we have that
for T large enough∣∣∣∣y − 1 +

1
λ
F (〈u0〉)

∣∣∣∣ ≤ 1
2
− Fm

2λ
, for t > T .

It follows that
d

dt
(v − y) +

λ− Fm

2
(v − y) ≤ −v(F (u) − F (〈u0〉)).

On multiplying by |v − y|p−2(v − y) (for p ≥ 2) and integrating over Ω, thanks to
the Young inequality and boundedness of v and F , we have that

d

dt

1
p

∫
Ω

|v − y|p + C1

∫
Ω

|v − y|p ≤ C2

∫
Ω

|F (u) − F (〈u0〉)|p for t > T .
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Since F is bounded and p ≥ 2:∫
Ω

|F (u) − F (〈u0〉)|p ≤ C

∫
Ω

|F (u) − F (〈u0〉)|2,

then, after integration over (T,∞) and thanks to Lemma 4.11 we obtain∫ ∞

T

∫
Ω

|v − y|p ≤ C3

∫ ∞

T

∫
Ω

|F (u) − F (〈u0〉)|2 ≤ C

and therefore ∫ ∞

0

∫
Ω

|v − y|p =
∫ T

0

∫
Ω

|v − y|p +
∫ ∞

T

∫
Ω

|v − y|p ≤ C. (4.34)

As in the previous lemma we consider the function

k3(s) :=
∫

Ω

|v − y|p

which clearly satisfies (i) and (ii). (iii1) is a consequence of boundedness of v, F and
y′. We now apply Lemma 5.1 in Ref. 10, to prove that∫

Ω

|v − y|p → 0, as t→ ∞,

(4.33) and the above inequality prove the lemma.

Lemma 4.13. Let w̄ as defined in Theorem 4.1. Then,

|〈w(t)〉 − w̄|p → 0, as t→ ∞.

Proof. We first consider the IPT1 problem, and we integrate (1.3) over Ω to obtain:

d

dt

∫
Ω

w + µ

∫
Ω

w = α

∫
Ω

vF (u).

Then
d

dt

∫
Ω

(w − w̄) + µ

∫
Ω

(w − w̄) =
∫

Ω

(αvF (u) − µw̄). (4.35)

We add and subtract to the last term in the previous equation the term αv̄
∫
Ω
F (u)

and replace w̄ by its definition to obtain∫
Ω

(αvF (u) − µw̄) =
∫

Ω

(v − v̄)αF (u) +
α

|Ω|
∫

Ω

v

∫
Ω

(F (u) − F (〈u0〉))

+αF (〈u0〉)
∫

Ω

(
v − 1 +

1
λ
F (〈u0〉)

)
and by boundedness of v and F we obtain for any p ≥ 2:∣∣∣∣

∫
Ω

(αvF (u) − µw̄)
∣∣∣∣
p

≤ C1

∫
Ω

|v − v̄|p + C2

∫
Ω

|F (u) − F (〈u0〉)|2

+C3

∫
Ω

∣∣∣∣v − 1 +
1
λ
F (〈u0〉)

∣∣∣∣
p

.



September 30, 2016 9:10 WSPC/103-M3AS 1640010

2158 J. I. Tello & D. Wrzosek

Integrating over (0,∞) and making use of Lemmata 4.11 and 4.12 and (4.28) we
conclude ∫ ∞

0

∣∣∣∣
∫

Ω

(αvF (u) − µw̄)
∣∣∣∣
p

≤ C. (4.36)

On multiplying in (4.35) by∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p−2∫

Ω

(w − w̄),

we have

d

dt

1
p

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

+ µ

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

=
∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p−2∫

Ω

(w − w̄)
∫

Ω

(αvF (u) − µw̄). (4.37)

Because of uniform boundedness of w, v and F we infer∣∣∣∣ ddt 1
p

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p∣∣∣∣ ≤ C. (4.38)

By the Young inequality and (4.37) we obtain

d

dt

1
p

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

+ c

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

≤ c

∫
Ω

|αvF (u) − µw̄|p

integrating over (0,∞) we obtain, by (4.36):∫ ∞

0

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

≤ C. (4.39)

Equations (4.38), (4.37) and Lemma 5.1 in Ref. 10, prove the result for IPT1 model.
ITP2 model is treated in the same way, after integration we obtain

d

dt

∫
Ω

w + µ

∫
Ω

(w − w̄) =
∫

Ω

(αv − µw̄) = α

∫
Ω

(v − v̄).

We multiply by |∫Ω(w − w̄)|p−2
∫
Ω(w − w̄) and obtain

d

dt

1
p

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

+ µ

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

= α

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p−2∫

Ω

(w − w̄)
∫

Ω

(v − v̄).

The Young inequality provides

d

dt

1
p

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

+
µ

2

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

≤ c

∣∣∣∣
∫

Ω

(v − v̄)
∣∣∣∣
p

. (4.40)

Boundedness of v and w gives∣∣∣∣ ddt 1
p

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p∣∣∣∣ ≤ C.
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Integrating in (4.40) over (0,∞) we obtain∫ ∞

0

∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

≤ C.

To end the proof we apply again Ref. 10, to the function

k(t) :=
∣∣∣∣
∫

Ω

(w − w̄)
∣∣∣∣
p

.

Now we are in a position to complete the proof of Theorem 4.1. It is a conse-
quence of Lemmata 4.9, 4.10, 4.12 and 4.13.

5. Conclusions and Discussion

We have studied two mathematical models which extend the simple logistic popu-
lation model of prey population

vt = λv(1 − v) −mv, (5.1)

where m is the mortality rate which depends on the averaged density of predators
m = F (ū). It is easily seen that for λ > m, Eq. (5.1) has a unique stable steady state
v̄ = 1− m

λ . We have considered weak feedback between predator and prey assuming
that the consumption of prey affects only the spatial distribution of predator and its
influence on birth rate of predators is negligible. Two possible strategies of search
are used by the predator: random dispersal and taxis-oriented movement. In the
simplest case, when the only strategy is the random dispersal, the situation is more
similar to that described by the O.D.E. (5.1). Indeed, by setting χ = 0 and removing
the second column and second row in the matrix (3.9) we deduce that the space
homogeneous steady state v̄ is linearly stable without any additional assumptions on
the parameters. We have shown that the steady state remains stable if we take into
account an additional component of predator search strategy namely taxis toward
some chemical released by prey — a smell of prey (Model IPT2). However, the
spatially homogeneous steady state may become unstable if the chemoattractant is
released by prey injured during capturing (Model IPT1) and Λ = χαū

λ is big enough
(Theorem 3.1). Thus, the steady state may be unstable if chemotactic sensitivity χ
or the rate of release of the chemoattractant α is big enough. It is also worth noticing
that in the case of very big initial averaged density of predator, we have that the
spatially homogeneous steady state may be unstable even if χ and α are at relatively
low level. This effect may be interpreted as the result of interference competition
among predators since the total rate of consumption of prey by predators cannot
exceed some threshold value even if the density level of predator is huge.

The instability result seems to be counterintuitive in the light of stability results
known for full predator–prey system of Rosenzweig–MacArthur type with prey-
taxis. For the latter case it was shown in Refs. 21 and 1 that prey-taxis enhances
the stability of the spatially homogeneous steady state which is stable also in the
case of O.D.E. system. The effect of instability in Model IPT1 reflects a positive
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feedback between the density of predators and production of chemoattractant —
the effect which resembles the classical Keller–Segel model of chemotaxis. Notice
also that for both models studied in this paper, the convergence of solutions to the
constant steady state holds (see Sec. 4) provided some restrictions on parameters
and the size of averaged initial density of predators and prey are satisfied.

In the case of Model IPT1 when the chemical emitted by prey is due to dam-
age of prey body during capturing, we have proved existence of inhomogeneous
steady states. One of defend strategies of prey against predator is aggregation,
which decrease the predation risk per prey. Our results suggest that even in the
case of models with weak coupling between predator and prey, the formation of
prey aggregates may result solely from specific prey–predator interactions provided
the search strategy of predator admits tactic migration toward the increasing con-
centration of the chemical released by injured prey.

The stability of non-homogeneous steady states is the subject of further studies.
The global dynamics of solutions to both models is surprisingly complicated, in
particular it is unclear what could be the long-time asymptotics of solutions when
the spatially homogeneous steady state is unstable. The compactness of bounded
trajectories of the corresponding dynamical system is unclear due to the lack of
elliptic operator in the last equation.

A natural extension of the models is to consider the dispersal of prey population
as well as the impact of prey on the rate of growth of predator or assuming bounded
functional response of predator of type Holling I or Holling II.
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