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Abstract. We consider a simple mathematical model of tumor growth based

on cancer stem cells. The model consists of four hyperbolic equations of first
order to describe the evolution of different subpopulations of cells: cancer stem

cells, progenitor cells, differentiated cells and dead cells. A fifth equation is in-

troduced to model the evolution of the moving boundary. The system includes
non-local terms of integral type in the coefficients. Under some restrictions in

the parameters we show that there exists a unique homogeneous steady state

which is stable.

1. Introduction. The development and growth of a tumor is a complicated phe-
nomenon which involves many different aspects from the sub-cellular scale (gene
mutation or secretion of substances) to the body scale (metastasis).

It is well known that tumors are composed of a heterogeneous mix of cells and
other substances, as nutrients and chemicals. Experiments during the last decades
confirmed the existence of subpopulation of Cancer Stem Cells (CSC) inside the
tumors of most cancer′s types. CSC exhibit similar characteristics that stem cells,
as the capacity of self-renewal and represent only about 1% of the tumor (see for
instance [1], [3] or [9] for more details).

In the last years, CSC have focused the interest of an important part of the
specialized community in the field. Recent studies have identified populations of
CSC in an increasing list of cancer types. Experimental studies evidence CSC as
responsible for the long-term survival of some type of cancer after therapies, while
other experiments are focused on the role of CSC in metastatic progression of cancer
(see [2]), nevertheless the knowledge about these cells is still limited.

Systems of PDE′s to model tumor growth have been studied in the last 40 years.
During these years, the models have been classified following different criteria: free
boundaries, stochastic terms etc. In this work we study a mathematical model
which takes into consideration different types of cells: CSC, progenitor cancer cells
and differentiated cancer cells modeled as a free boundary problem. The model is
considered for the early stage of the cancer when the tumor size is small and necrosis
is not present. Experiments show that the growth of the tumor at this stage follows
an exponential growth.
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CSC′s mitosis may originate two CSC or two progenitor cells through symmetric
division or one of each class through asymmetric division. Regulation of symmetric
or asymmetric division is a complex process which depends on a range of conditions,
as concentration of cytokines, growth factors etc, existing in the microenvironment
of the cell (see for instance [3] and references there). The regulation process still
posseses several steps not well understood.

In [7] a system of ordinary differential equations is introduced to model the
presence of CSC in the tumor. The authors consider several types of cells: CSC,
differentiated cells, cells in an intermediate stage between CSCs and differentiated
cells called progenitor cells which appear at different stages and finally death cells.

The article is organized as follows. In Section 2 we describe the mathematical
model, which consists of a system of hyperbolic equations with a moving boundary.
Sections 3 and 4 are devoted to the mathematical analysis of the system with
special emphasis to the stability of the unique steady state under a suitable set of
restrictions in the parameters and a simplification of the model. We prove that,
for a range of parameters there exists a unique homogeneous steady state which is
stable. The proof follows a sub- and super-solutions argument where a system of
Ordinary Differential Equations is introduced. The conclusions are presented in the
last section.

2. Modelling. In order to describe the mathematical model we introduce the fol-
lowing notation and the hypothesis listed below.

- “s ” cancer stem cells density,
- “p ” progenitor cells density,
- “m ” differentiated cells density,
- “d ” death cells density,
- “v ” velocity of tumor cells within the tumor,
- “Ω(t)” the interior of the tumor,
- “∂Ω(t)” the boundary of the tumor.

H1 The different type of cells are physically identical with a continuous distribu-
tion into the tumor.

H2 Cells interact through the exchange of molecules and may evolve sponta-
neously from one state to another, depending on their initial state and the
microenviroment.

H3 The CSC division process is regulated by a chemical feedback with the cell′s
neighborhood which determines the type of division (symmetric or asymmet-
ric). We consider that the rate of growth of CSC is a nonlocal function kss
which depends explicitly or implicitly on the concentration of CSC in the
neighborhood of the cell. We consider a general non-local expression for the
growth rate function

kss(x, t) = k0 −
1

|Ω(t)|

∫
Ω(t)

k1(t, x, y)s(y, t)dy (1)

where k1 is a positive function which measures the influence of the concentra-
tion of CSC in the tumor. Particular expressions of k1 are proposed below

Case I.

kss(x, t) = k0 −
∫
|x−y|≤ε

k1(|x− y|)s(y, t)dy
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where k1 is a positive function depending on the distance between the
cells.
Case II.
k1 is the green function of a particular partial differential operator of pa-
rabolic or elliptic type. For instance kss = k0 − z where z is the solution
to the the parabolic problem

κzt −∆z + λz = s

or the elliptic problem

−∆z + λz = s

with the appropriate boundary conditions.
H4 CSC may produce progenitor cells at ratio kps in a similar way that in the

previous hypothesis. We assume

kps := k2 +

∫
Ω(t)

k3(x, y)s(y, t)dy. (2)

H5 p-cells can either self-renew or they can differentiate into m-cells at constant
rates kpp and kmp respectively.

H6 We assume that m-cells have a neglected capacity to proliferate, and therefore
the corresponding rate growth factor does not appear.

H7 We assume that subpopulation tumor cells p and d die at constant rates kp and
kd respectively and decompose at rate kd. The death rate of SCS is assumed
null.

Assumption H1 and H2 are frequently used in continuous models of differential
equations where different types of cells are mixed (see for instance [4] or [8]). Con-
stant rates for proliferation and death of cells (i.e. assumptions H5, H6 and H7) are
also used in [7], [8] and [6] for instance. Coefficients depending on the concentration
of nutrients are described in [4] for the first stage of the tumor and it is natural to
assume that death of cells is produced by apoptosis (assumption H7). Assumptions
H3 and H4 are introduced in this work in order to obtain the rate of growth of
CSC. Nonlocal terms of integral type have been used in mathematical modeling by
a long list of authors. In [10] the authors suggest a growth coefficient rate for the
cancer cells which considers the influence of the immediate surrounding of a cell to
replicate itself. The coefficient in [10] is given in the form

µ1

(
1−

∫
Ω

k1,1(x, y)u(y)dy −
∫

Ω

k1,2(x, y)v(y)dy

)
,

where “u” and “v” denote cancer cells density and extracellular matrix density
respectively. The nonlocal term describes the “competition” for the space between
cancer cells and extracellular matrix.

Following [4] we consider a continuous motion of cells within the tumor due to
the proliferation and death of cancer cells. The tumor tissue is treated as a porous
medium and the moving cells as fluid flow. The velocity v of the fluid flow is
described by Darcy′s law

v = −β∇σ
where σ is the pressure of the fluid and β is a positive constant assumed 1. Then,
the evolution of subpopulation of cancer cells are described by the following system
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of first order hyperbolic equations.

∂s

∂t
+ div(vs) = ksss− kpss, 0 < t < T, x ∈ Ω(t),

∂p

∂t
+ div(vp) = kpss+ kppp− kmp p− kpp, 0 < t < T, x ∈ Ω(t),

∂m

∂t
+ div(vm) = kmp p− kmm, 0 < t < T, x ∈ Ω(t),

∂d

∂t
+ div(vd) = kpp+ kmm− kdd, 0 < t < T, x ∈ Ω(t),

(3)

where the coefficients kss, k
p
s , kmp , kp, km and kd are described in H1-H7. For

simplicity we assume that coefficients k1 and k3 introduced to define kss and kps in
(1) and (2) are constant and therefore kss and kps are defined by

kss = k0 −
k1

|Ω(t)|

∫
Ω(t)

s and kps = k2 +
k3

|Ω(t)|

∫
Ω(t)

s. (4)

The system (3) is completed with appropriate initial data

s(0, x) = s0(x), p(0, x) = p0(x), m(0, x) = m0(x) and d(0, x) = d0(x)

in |x| ∈ Ω0. In [7], the growth rates kss and kps are assumed constant, the reader
can find there explicit values of the rest of the parameters. CSC represents. The
conservation of the mass laws for the densities of the cells, assumed homogeneous
tumor density, gives

s+ p+m+ d = constant = N, (5)

where the constant N is assumed 1. From (5) we can obtain an explicit expression
for the density of m-cells as a function of s, p and d, i.e. m = 1− s− p− d and the
system (3) can be simplified to

∂s

∂t
+ div(vs) = ksss− kpss, 0 < t < T, x ∈ Ω(t),

∂p

∂t
+ div(vp) = kpss+ kppp− kmp p− kpp, 0 < t < T, x ∈ Ω(t),

∂d

∂t
+ div(vd) = kpp+ km(1− s− p− d)− kdd, 0 < t < T, x ∈ Ω(t),

assumed
s0 + p0 +m0 + d0 = 1.

We add equations in (3) and thanks to (5) we have the balance of the mass given
by

div(v) = ksss+ kppp− kdd for 0 < t < T, x ∈ Ω(t). (6)

For simplicity we assume radially symmetric distribution of cells and spherical tu-
mors, i.e. Ω(t) := {x ∈ IR3, such that |x| ≤ R(t)} where R(t) denotes the radius of
the tumor. By continuity we assume that the velocity of the free boundary is equal
to the velocity of the fluid flow at the boundary (see for instance [4])

dR

dt
= v(R(t), t) for t > 0. (7)

We assume throughout the paper that the initial data s0, p0, m0 and d0 are regular
functions, in the sense of continuous and bounded functions, satisfying

0 < s0 < 1, 0 < p0 < 1, 0 < m0 < 1 and 0 < d0 < 1 in Ω0. (8)
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In section 4 we consider the following extra assumptions.

H8 At the early stage the volume of the components derived from death cells
decomposition (mainly water) described by the term kdd may be neglected as
compared by the growth capacity of the proliferating cells “p” (modelized by
the term “kppp”) i.e.

kdd << kppp. (9)

Notice that assumption (9) is only introduced for the early stage of the tumor.
For posterior stages (as necrotic tumors) (9) can not be assumed.

H9 Experiments show that the mitosis cycle of CSC is smaller that mitosis cycle
of proliferating cells. Consequently we assume

kpss << kppp. (10)

Assumptions (9) and (10) are used in Section 4 to simply the system and study the
stability of the steady state.

As a consequence of a large number of parameters we reduce our work to the
following case:

s∗ :=
k0 − k2 − kpp + kmp kp

k1 + k3
∈ (0, 1) (11)

ks∗s := k0 − k1s
∗ > 0, kp∗s := k2 + k3s

∗ > 0 (12)

p∗ :=
ks∗s (1− s∗)− kp∗s

kpp
∈ (0, 1) (13)

k1(1 + s∗)− k0 = −µ < 0, (14)

and

s∗ + p∗ ≤ 1. (15)

Notice that as a consequence of (14) we have

k0 − k1 > 0. (16)

In Section 4 we see that (s∗, p∗) is an steady state of a simplified system. To
have a biological meaningful steady state we impose assumptions (11), (13) and
(15). Assumption (16) is introduced by technical reasons in order to prove that the
steady state is stable. (16) gives a growth rate of stem cells kss large enough, in the
sense that

ks∗s = k0 − k1s
∗ > k1.

3. Mathematical analysis. We introduce the spacial variable r ∈ I := (0, 1) such
that

r :=
|x|
R(t)

.

Since

∇ · (vs) = s∇ · v + v · ∇s = s(ksss+ kppp− kdd) +
v

R

∂s

∂r
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the system (3), (6), (7) and (8) becomes

∂s

∂t
+

(
−r Ṙ

R
+
v

R

)
∂s

∂r
= ksss− kpss+ s(−ksss− kppp+ kdd), (17)

∂p

∂t
+

(
−r Ṙ

R
+
v

R

)
∂p

∂r
= kpss+ p(kpp − kmp − kp − ksss− kppp+ kdd), (18)

∂m

∂t
+

(
−r Ṙ

R
+
v

R

)
∂m

∂r
= kmp p− kmm+m(−ksss− kppp+ kdd), (19)

∂d

∂t
+

(
−r Ṙ

R
+
v

R

)
∂d

∂r
= kpp+ kmm− kdd+ d(−ksss− kppp+ kdd), (20)

∂

∂r
(r2 v

R
) = r2(ksss+ kppp− kdd), (21)

with boundary conditions

v(1, t) =
dR

dt
and v(0, t) = 0 (22)

and initial data

s(r, 0) = s0, p(r, 0) = p0, m(r, 0) = m0, d(r, 0) = d0 and R(0) = R0. (23)

Notice that by integration in (21) and thanks to (22)

v(1, t)

R(t)
=

∫
I

r2(ksss+ kppp− kdd)

and
dR

dt
= v(1, t) = R(t)

∫
I

r2(ksss+ kppp− kdd). (24)

Let φ be defined by

φ(x) :=

 0 if x ≤ 0,
x if 0 < x ≤ 1,
1 otherwise.

In the following lemma we proof that the solution satisfies

0 ≤ s ≤ 1, 0 ≤ p ≤ 1, 0 ≤ m ≤ 1 and 0 ≤ d ≤ 1 (25)

provided (8). For technical reasons we introduce φ(s) to replace s in the integral
part of the coefficients kss and kps for the proof of Lemma 3.1. Once we prove that
the solutions satisfy (25) we may eliminate the auxiliary function φ.

Lemma 3.1. Under assumption (8) we have that the solution satisfies (25).

Proof. Let Hε be the regularized Heaviside function and denote by ( · )+ the positive
part function. Notice that

lim
ε→0

sHε(s) = (s)+.

We also consider the functions ψε, ψ, Ψε and Ψ : IR→ IR defined by

ψε(x) :=

 −1, x ≤ −ε,
1
εx, −ε < x < 0,
0, x ≥ 0,

ψ(x) :=

{
−1, x < 0,
0, x ≥ 0,
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Ψε(x) :=

 −x−
ε
2 , x ≤ −ε,

1
2εx

2, −ε < s < 0,
0, x,≥ 0,

Ψ(x) :=

{
−x, x,≤ 0,
0, x,≥ 0.

Notice that Ψ′ε = ψε and

lim
ε→0

ψε = ψ; lim
ε→0

Ψε = Ψ and xψ(x) = Ψ(x) for x ∈ IR.

We multiply equation (17) by −r2ψε(s) and integrate over I to take limits as ε→ 0
to obtain

d

dt

∫
I

r2Ψ(s) +

∫
I

r2

(
−r Ṙ

R
+
v

R

)
∂Ψ(s)

∂r
=∫

I

r2ψ(s)(ksss− kpss− s2kss − kppps+ kdds).

(26)

We notice that the second term in the left hand side part of (26) can be expressed
in a simpler way:

1

2

∫
I

r2

(
−r Ṙ

R
+
v

R

)
∂Ψ(s)

∂r
=

3Ṙ

R

∫
I

r2Ψ(s)− 1

R

∫
I

r2Ψ(s)
1

r2

∂r2v

∂r
(27)

by (21) we have that

1

R

∫
I

Ψ(s)
∂r2v

∂r
=

∫
I

r2Ψ(s)(ksss+ kppp− kdd). (28)

Thanks to (27), (28) and the equality Ψ(s) = sψ(s), (26) becomes

d

dt

∫
I

r2Ψ(s) +
3Ṙ

R

∫
I

r2Ψ(s) =

∫
I

r2ψ(s)(ksss− kpss) =

∫
I

r2Ψ(s)(kss − kps).

Since kss − kps ≤ k0 − k2, it results

d

dt

∫
I

r2Ψ(s) ≤

(
k0 − k2 −

3Ṙ

R

)∫
I

r2Ψ(s).

By Gronwall′s lemma we deduce that s ≥ 1. In the same way, and using that s is
a positive function we prove that p ≥ 0 which implies that m ≥ 0 and d ≥ 0. Since
s+ p+m+ d = 1 the proof ends. �

Remark 1. Previous lemma and (24) implies that there exists a constant c0 which
depends on k0, k1, k2, k3 and kd such that∣∣∣Ṙ∣∣∣R−1 ≤ c0 <∞

and after integration we deduce R(t) ∈ [R0e
−c0t, R0e

c0t].

Theorem 3.2. Under assumptions (8), the system (17)-(23) has a unique global
solution.

The proof follows a straightforward argument based on Banach fixed point theo-
rem in the appropriate functional spaces for local existence. Thanks to Lemma 3.1
and Remark 1 we have global existence. Uniqueness is a consequence of the Banach
fixed point argument. Similar computations can be found in [5] where more details
are given. The solution is also Lipchitz continuous.
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4. Stability of the steady states for a simplified model. Under assumptions
(9) and (10), equations (17), (18) and (21) become

∂s

∂t
+

(
−r Ṙ

R
+
v

R

)
∂s

∂r
= ksss− kpss+ s(−ksss− kppp), (29)

∂p

∂t
+

(
−r Ṙ

R
+
v

R

)
∂p

∂r
= kppp− kmp p− kpp+ p(−ksss− kppp), (30)

∂

∂r
(r2 v

R
) = r2(ksss+ kppp), (31)

with boundary conditions

v(1, t) =
dR

dt
and v(0, t) = 0, (32)

and initial data

s(r, 0) = s0, p(r, 0) = p0 and R(0) = R0. (33)

As in Lemma 3.1, we introduce the function φ in the coefficients kss and kps such
that

kss = k0 − 3k1

∫
I

r2φ(s) and kps = k2 + 3k3

∫
I

r2φ(s). (34)

Once we prove s ≤ 1 we may eliminate φ.

Lemma 4.1. The solution to the system (29)-(33), for kss and kps defined in (34)
satisfies

0 ≤ s ≤ 1 and 0 ≤ p ≤ 1.

Proof. As in Lemma 3.1 we multiply (29) by ψε(s) and (30) by ψε(p) and integration
over I. We take limits as ε→ 0 and thanks to Gronwall′s lemma we conclude

s ≥ 0 and p ≥ 0.

In order to obtain the upper bound we add both equations

∂

∂t
(s+ p) +

(
−r Ṙ

R
+
v

R

)
∂

∂r
(s+ p) =

(s+ p− 1)(−ksss− kppp)− p(kmp + kp)− kpss.
(35)

By (34) and (16) we know that

0 < k0 − k1 ≤ kss ≤ k0, k2 ≤ kps ≤ k2 + k3. (36)

Multiply (35) by r2Hε(s+ p− 1) and proceed as in Lemma 3.1 to obtain

d

dt

∫
I

r2(s+ p− 1)+ =

−3
Ṙ

R

∫
I

r2(s+ p− 1)+ −
∫
I

r2H(s+ p− 1)(p(kmp + kp) + ksss).

Remark 1 and (36) implies that

d

dt

∫
I

r2(s+ p− 1)+ ≤ 3R0e
c0t

∫
I

r2(s+ p− 1)+.

Gronwall′s lemma and (8) end the proof. �
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Remark 2. As a consequence of the previous lemma and (16), we have

kss > k0 − k1 > 0, and k2 < kps < k2 + k3. (37)

In order to study the asymptotic behaviour of the solutions we introduce the
following system of ODE′s

s′ = s(kss − kps − ksss− kppp), (38)

s′ = s(kss − kps − ksss− kppp), (39)

p′ = p((kpp − kmp − kp)− ksss− kppp), (40)

p′ = p((kpp − kmp − kp)− ksss− kppp), (41)

with initial data s0, s0, p0 and p
0

satisfying

0 < s0 < s∗ < s0 ≤ 1, 0 < p
0
< p∗ < p0 ≤ 1 (42)

and kss and kps defined in (4) by

kss = k0 − 3k1

∫
I

r2s and kps = k2 + 3k3

∫
Ω(t)

r2s. (43)

Notice that the system can be expressed as two independent systems of ODEs. s′ = s(kss − kps − ksss− kppp),

p′ = p(kpp − kmp − kp − ksss− kppp) s′ = s(kss − kps − ksss− kppp),

p′ = p((kpp − kmp − kp)− ksss− kppp).

Lemma 4.2. Under assumption (42), there exists a unique global solution to (38)-
(41) satisfying

0 < s < s ≤ 1 and 0 < p < p ≤ 1. (44)

Proof. Notice that the right hand side terms in the system are polynomial in the
unknowns with continuous and positive coefficients. Then, we have existence and
uniqueness of solutions in C1(0, Tmax) for some Tmax ≤ ∞ such that

|Tmax|+ |s|+ |s|+ |p|+ |p| =∞.

Since s ≡ 0 is a solution to (38), by uniqueness of solutions we have that s > 0 for
positive initial data. In the same way we obtain that s > 0, p > 0 and p > 0.

In order to end the proof we argue by contradiction. Let us assume that there
exists t0 < Tmax such that

s < s and p < p, for t < t0

and

(s− s)(p− p) = 0, at t = t0.

- If s(t0) = s(t0), then s′(t0) ≥ s′(t0) and therefore p(t0) ≥ p(t0).

- If p(t0) = p(t0), then p′(t0) ≥ p′(t0) which implies s(t0) ≥ s(t0).
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So, necessarily

s(t0) = s(t0), p(t0) = p(t0),

and the backward solution satisfies

s(0) = s(0), p(0) = p(0)

which contradicts assumption (43). As a consequence of Lemma 4.1 and (16), the
following inequalities hold

kps > 0, kppp > 0

and then

s′ ≤ ksss(1− s)
for a positive coefficient kss. By assumption (42) we have that s ≤ 1 for t ≤ Tmax.
In the same way we proof that p ≤ 1 for t ≤ Tmax. To end the proof we notice
that, since the solutions and the coefficients are uniformly bounded, we get that
Tmax =∞. �

Theorem 4.3. We assume

0 < s0 ≤ s0 ≤ s0 and 0 < p
0
≤ p0 ≤ p0, (45)

then

s ≤ s ≤ s and p < p < p

for any t > 0.

Proof. We consider the following functions defined by

S = s− s, S = s− s, P = p− p and P = p− p.

Notice that S satisfies the equation

∂S
∂t +

(
−r ṘR + v

R

)
∂S
∂r = s(kss − kps − ksss− kppp)− s(kss − kps − ksss− kppp))

= S[kss − kps − ksss− kppp] + s(−kss(s− s)− kpp(p− p)).
(46)

We multiply (46) by r2Hε(S) and integrate over I. We take limits as ε→ 0 to get

∂

∂t

∫
I

r2(S)+ +

∫
I

r2

(
−r Ṙ

R
+
v

R

)
∂(S)+

∂r
=∫

I

r2(S)+[kss − kps − ksss− kppp] +

∫
I

r2H(S)s(−kss(s− s)− kpp(p− p)).
(47)

The second term in the left hand side part of (47) is treated in the following way∫
I

r2

(
−r Ṙ

R
+
v

R

)
∂(S)+

∂r
= 3

Ṙ

R

∫
I

r2(S)+ −
∫
I

(S)+
1

R

∂r2v

∂r
.

Thanks to (31) the last term in the previous equation is simplified to

−
∫
I

r2(S)+
1

r2R

∂r2v

∂r
= −

∫
I

r2(S)+(ksss+ kppp). (48)

We consider the last term in the right hand side part of (47)∫
I

r2H(S)s(−kss(s− s)− kpp(p− p)) ≤ s
∫
I

r2(−kss(S)+ + kppΨ(P )). (49)
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Therefore thanks to (47)–(49) we have

∂

∂t

∫
I

r2(S)+ ≤

(
−3

Ṙ

R
− ksss

)∫
I

r2(S)+ + skpp

∫
I

r2Ψ(P ).

In the same way we obtain the following inequalities for S, P and P

∂

∂t

∫
I

r2Ψ(S) ≤

(
−3

Ṙ

R
+ kss − kps + ksss

)∫
I

r2Ψ(S)− skpp
∫
I

r2P+,

∂

∂t

∫
I

r2(P )+ ≤

(
−3

Ṙ

R
+ (kpp − kmp − kp(1 + p))p

)∫
I

r2(P )+ + pkss

∫
I

r2Ψ(S)

and

∂

∂t

∫
I

r2Ψ(P ) ≤

(
−3

Ṙ

R
+ (kpp − kmp − kp(1 + p)p

)∫
I

r2Ψ(P )− pkss
∫
I

r2S+.

Summing up the above expressions and thanks to Remark 1 and (37) we obtain

∂

∂t

∫
I

r2[(S)++Ψ(S)+(P )++Ψ(P )] ≤ k(t)

∫
I

r2[(S)++Ψ(S)+(P )++Ψ(P )]. (50)

Since the initial data s0 and p0 satisfy (45) we have that∫
I

r2
(
(S)+ + Ψ(S) + (P )+ + Ψ(P )

)∣∣∣∣
t=0

= 0.

We apply Gronwall′s lemma to end the proof. �

Lemma 4.4. Under assumptions (11)-(14) there exist a unique steady state of the
system (38)-(42) s∗, s∗, p∗ and p∗ satisfyng

s∗ = s∗ = s∗ = 3

∫
I

r2s and p∗ = p∗ = p∗,

for s∗ and p∗ defined in (11) and (13) respectively.

Proof. We consider the case where s does not depend on t, i.e. kss and kps are given
constants. Then

kss − kps = ksss+ kppp (51)

we replace in (39) to obtain

kpp − kmp − kp = kss − kps

= k0 − k2 − (k1 + k3)3

∫
I

r2s.

Therefore

3

∫
I

r2s =
k0 − k2 − kpp + kmp + kp

k1 + k3
> 0.

Then s∗, p∗ defined en (11) and (13) satisfies (38)-(41). The uniqueness is a conse-
quence of the linearity in p of (51). �

Lemma 4.5. Under assumption (42), the solution s, s, p and p to (38)-(41) satisfy

s ≤ s∗ ≤ s and p < p∗ < p,

for s∗ and p∗ defined in (11) and (13) respectively.
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Proof. We consider ks∗s and kp∗s defiend in (12) and the following functions

S
∗

= s− s∗, S∗ = s− s∗, P
∗

= p− p∗ and P ∗ = p− p∗.
Thanks to Lemma 4.4 we know that

ks∗s − kp∗s − ksss∗ − kppp∗ = 0

then S
∗

satisfies

d

dt
S
∗

= s((kss − ks∗s )− (kps − kp∗s )− (ksss− ks∗s s∗)− kpp(p− p∗)).

Notice that
−(ksss− ks∗s s∗) = −(kss − ks∗s )s− ks∗s S

∗

= k13

∫
I

r2(s− s∗)s− ks∗s S
∗

and

(kss − ks∗s )− (kps − kp∗s ) = (k1 + k3)

(
s∗ − 3

∫
I

r2s

)
.

Then we have

d

dt
S
∗

= s

(
(k1(1− s) + k3)

(
s∗ − 3

∫
I

r2s

)
− ks∗s S

∗ − kppP
∗
)
.

Thanks to (44) we have that (k1(1− s) + k3) > 0 and Theorem 4.3 implies

s∗ − 3

∫
I

r2s ≥ 0 if s = s∗.

Therefore, it results
d

dt
S
∗ ≥ −skppP

∗ if S
∗

= 0.

In the same way, if S
∗ ≥ 0

−(ksss− ks∗s s∗) = −(kss − ks∗s )s− ks∗s S
∗

= k1(3

∫
I

r2s− s∗)s− ks∗s S
∗

≤ k1(s− s∗)− ks∗s S
∗

= (k1(1 + s∗)− k0)S
∗

= −µS∗

we have
d

dt
P ∗ ≤ −p

(
µS
∗

+ kppP
∗
)

if S
∗ ≥ 0.

We consider the approximated problem
s′ε = sε(k

s
s − kps − ksssε − kpppε),

p′
ε

= p
ε
(kpp − kmp − kp − ksssε − kpppε)− ε,

with the initial data

sε(0) = s0 p
ε
(0) = p

0
.

Notice that

s < sε ≤ 1, p
ε
< p.



ON A MATHEMATICAL MODEL OF TUMOR GROWTH 275

We introduce the following functions

S
∗
ε = sε − s∗ and P ∗ε = p

ε
− p∗

which satisfy

d
dtS
∗
ε = sε

(
(k1(1− sε) + k3)

(
s∗ − 3

∫
I
r2s
)
− ks∗s S

∗
ε − kppP

∗
ε

)
,

d
dtP

∗
ε = p

ε

(
−k1s

∗ (s∗ − 3
∫
I
r2s
)
− kssS

∗
ε − kppP

∗
ε

)
− ε.

As before we have that

d

dt
S
∗
ε ≥ −sεkppP

∗
ε , if S

∗
ε = 0

and
d

dt
P ∗ε < −pε

(
µS
∗
ε + kppP

∗
ε

)
if S

∗
ε ≥ 0.

We argue by contradiction and assume that there exists t0 <∞ such that

S
∗
εP
∗
ε = 0 for t = t0 and S

∗
εP
∗
ε < 0 for t < t0.

If S
∗
ε = 0 at t0, by the regularity of the solutions we have that d

dtS
∗
ε ≤ 0 and

therefore

P ∗ε = 0,
d

dt
P ∗ε < 0 at t = t0

which is a contradiction and proves

S
∗
ε > 0 for t = t0.

If P ∗ε = 0 for t = t0 we have that

d

dt
P ∗ε < 0 at t = t0

which contradicts the regularity of P ∗ε and proves

S
∗
ε > 0, P ∗ε < 0 for any t > 0.

Taking limits when ε→ we obtain

S
∗ ≥ 0, P ∗ ≤ 0 for t > 0.

In the same fashion we prove

S∗ ≤ 0, P
∗ ≥ 0 for t > 0

and the proof ends. �

Lemma 4.6. Under assumption (43), the solution s, s, p and p to (38)-(41) satisfy

|s− s|+ |p− p| ≤ c(|s0 − s0|+ |p0 − p0
|) for t > 0

and

c := 2s∗

(
(s0 − p0

)(p0 − p0
)

(s0 − s0 + p0 − p0
)s0 p0

+ p
0

)
≤ 2s∗

s0 p0

. (52)
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Proof. We divide (38) by s and (39) by s to obtain

s′

s
= (kss − kps − ksss− kppp),

s′

s
= (kss − kps − ksss− kppp).

Thanks to the above expressions we get

d

dt
ln
s

s
= −kss(s− s) + kpp(p− p).

In the same way we have

d

dt
ln
p

p
= kss(s− s)− kpp(p− p)

and then
d

dt

(
ln
s

s
+ ln

p

p

)
= 0.

After integration it results (
ln
s

s
+ ln

p

p

)
= k > 0

for k = ln s0 p0
s0 p0

. Then

s

s
≤ ek and

p

p
≤ ek (53)

i.e.
e−ks ≤ s and e−kp ≤ p

and thanks to Lemma 4.5 we have

e−ks∗ ≤ s and e−kp∗ ≤ p.
From (53) we have

s− s ≤ (ek − 1)s and p− p ≤ (ek − 1)p

and as a consequence of (42)

|s− s|+ |p− p| ≤ 2s∗

(
s0 p0

s0 p0

− 1

)
.

Notice that
s0 p0

s0 p0

− 1 =
1

s0 p0

(p0|s0 − s0|+ s0|p0 − p0
|)

and also
s0 p0

s0 p0

− 1 =
1

s0 p0

(p
0
|s0 − s0|+ s0|p0 − p0

|).

Then, by linear optimization we have

2s∗

(
s0 p0

s0 p0

− 1

)
≤ c(|s0 − s0|+ |p0 − p0

|).

where

c := 2s∗

(
(s0 − p0

)(p0 − p0
)

(s0 − s0 + p0 − p0
)s0 p0

+ p
0

)
.

�



ON A MATHEMATICAL MODEL OF TUMOR GROWTH 277

Theorem 4.7. The homogeneous steady state defined by

s = s∗ and p = p∗

is stable in the sense that

‖s− s∗‖L∞ + ‖p− p∗‖L∞ ≤ 2c(‖s0 − s∗‖L∞ + ‖p0 − p∗‖L∞)

for c defined in (52).

Proof. Notice that, by Theorem 4.3

‖s− s∗‖L∞ + ‖p− p∗‖L∞ ≤ |s− s∗|+ |s− s∗|+ |p− p∗|+ |p− p∗|,
where s, s, p and p are the solutions to (38)-(42) for initial data

s0 = max{sup{s0}, s∗}, s0 = min{inf{s0}, s∗},
p0 = max{sup{p0}, p∗}, p

0
= min{inf{p0}, p∗}.

Thanks to Lemma 4.5 and Lemma 4.6 we have that

|s− s∗|+ |s− s∗|+ |p− p∗|+ |p− p∗| ≤ |s− s|+ |p− p| ≤ c(|s0 − s0|+ |p0 − p0
|)

for c defined in (52). Since

|s0 − s0| ≤ 2‖s0 − s∗‖L∞ and |p0 − p0
| ≤ 2‖p0 − p∗‖L∞

we get
‖s− s∗‖L∞ + ‖p− p∗‖L∞ ≤ 2c(‖s0 − s∗‖L∞ + ‖p0 − p∗‖L∞)

and the proof ends. �

5. Conclusions and discussion. In this paper we propose a simple mathematical
model to describe the solid tumor growth based on Cancer Stem Cells (CSC). The
model describes the evolution of spherical tumor at the early stage where necrosis
is not present. The modeling follows [7] where a system of Ordinary Differential
Equations is considered. We include transport terms in the system following the
mass balance principle and nonlocal terms of integral type to model the birth rate
of stem cells. The system is simplified to obtain that, under some restrictions in
the parameters, there exists a unique steady state which is stable.

We assume that growth factor of proliferating cells kppp is larger than the degra-
dation factor of death cells, and the term kdd is neglected. This assumption is valid
for the early stage and the degradation term should be included to model later
stage. After chemotherapy the distribution of subpopulation of cells changes as a
consequence of the difference of the times of mitosis. Recent studies show that the
percentage of stem cells in the tumor stabilizes at a constant steady state. The sim-
plified mathematical model describes the stability of the steady state, nevertheless
the asymptotic stability of both models remains open. The inclusion of the term
kdd may produce a change in the stability of the system.
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