A note on a periodic Parabolic-ODE chemotaxis system

Mihaela Negreanu ${ }^{\text {a,* }}$, J. Ignacio Tello ${ }^{\text {b }}$, Antonio M. Vargas ${ }^{\text {a }}$
${ }^{\text {a }}$ Depto. Análisis Matemático y Matemática Aplicada, Universidad Complutense de Madrid, 2040, Spain
${ }^{\text {b }}$ Depto. Matemáticas Fundamentales, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain

A R T I C L E INF O

Article history:

Received 13 January 2020
Received in revised form 20 March 2020
Accepted 20 March 2020
Available online 25 March 2020

Keywords:

Chemotaxis
Periodic behavior
Global and uniform boundedness of solutions
Parabolic-ODE systems

Abstract

Existence of global classical solutions with a certain periodic asymptotic behavior of a class of reaction diffusion systems with chemotactic terms is demonstrated. This class contains a system consisting of a parabolic equation with a logistic-like term describing the behavior of a biological species and an ordinary differential equation modeling the concentration of a chemical substance throughout a regular function h. The logistic-like term limits the growth of the biological species and it contains a carrying capacity with a time-periodic asymptotic behavior.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

We study the prototype chemotaxis reaction-diffusion problem with logistic source containing a carrying capacity with a time-periodic asymptotic behavior:

$$
\begin{cases}\frac{\partial u}{\partial t}=\Delta u-\operatorname{div}(\chi u \nabla v)+\mu u(1-u+f(x, t)), & x \in \Omega, \tag{1}\\ v_{t}=h(u, v), & x \in \Omega, \\ \frac{\partial u}{\partial n}-u \chi \frac{\partial v}{\partial n}=0, & x \in \partial \Omega, \\ t>0\end{cases}
$$

with positive initial data $u(x, 0)=u_{0}(x), v(x, 0)=v_{0}(x)$, satisfying $0 \leq u_{0} \in L^{\infty}(\Omega) \cap W^{1, s}(\Omega), \underline{v} \leq v_{0} \leq \bar{v}$, for $x \in \Omega$ and positive constants μ, χ, \underline{v} and \bar{v}. Here $\Omega \subset \mathbb{R}^{n}$ is an open bounded domain with smooth boundary of measure $|\Omega|=1$. The growth of u is limited by a logistic-like term, where the carrying capacity presents a spatial and time dependence, $f(x, t)$, describing the resources of the environment.

Parabolic-ODE systems with chemotactic terms have been considered from the 90s, after the pioneering works of Anderson and Chaplain [1] and Levine and Sleeman [2] modeling tumor angiogenesis. Several

[^0]authors have considered these PDEs models from a mathematical point of view to study finite time blow up or global boundedness of solutions and its asymptotic behavior. Inspired by the technics of semi-linear parabolic equations, the number of works considering parabolic-ODE systems of chemotaxis has increased considerably within last two decades, see for instance the review Horstmann [3] and references therein for more details.

We assume that $h=h(u, v) \in W_{l o c}^{1, \infty}\left(\mathbb{R}_{+} \times \mathbb{R}\right), \chi$ and f satisfy the following conditions for some $\varepsilon>0$,
H1. $h_{u}>0, h_{v} \leq-\epsilon_{v}<0,0 \leq h(0,0)<\mu \varepsilon /(2 \chi),-h(0, v) \leq c e^{\chi v}, h_{v}+u \chi h_{u} \leq-\epsilon_{v} / 2$, with $\epsilon_{v}, c>0$.
H2. For a given constant $\mathcal{C}_{4}:=\mathcal{C}_{4}\left(u_{0},\|f\|_{L^{\infty}(\Omega)}, \mu, \chi, c\right\}$, defined in Lemma 2, with $\epsilon_{0}>0, h$ fulfills $\lim \sup _{s \rightarrow \infty} h\left(\mathcal{C}_{4} e^{\chi s}, s\right) \leq-\epsilon_{0}$.

H3. ε fulfills $-1+\varepsilon<f(x, t)$ and there exists a periodic function f^{*} such that

$$
\begin{equation*}
\inf _{x \in \Omega} f(x, t)<f^{*}(t)<\sup _{x \in \Omega} f(x, t), \quad \text { and } \quad \lim _{t \rightarrow \infty}\left\|f(x, t)-f^{*}(t)\right\|_{L^{\infty}(\Omega)} \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty \tag{2}
\end{equation*}
$$

We denote by u^{*} and v^{*} the periodic solutions of the ODEs equations

$$
\begin{equation*}
u_{t}^{*}=\mu u^{*}\left(1-u^{*}+f^{*}\right), \quad \text { and } \quad v_{t}^{*}=h\left(u^{*}, v^{*}\right) \tag{3}
\end{equation*}
$$

(with f^{*} as in (2), see [4] for the properties of the solution u^{*} to the Bernoulli's equation). The above conditions cover the examples $h(r, s)=r e^{-\chi s}-a s$, with $a>0$ and $h(r, s)=\left(r e^{-\chi s}+s\right) /(1+s)-s$.

Theorem 1. Let the conditions H1. to H3. hold. Then, for any nonnegative initial data $\left(u_{0}, v_{0}\right) \in\left(L^{\infty}(\Omega) \cap\right.$ $\left.W^{1, s}(\Omega)\right)^{2}$, there exists a unique global nonnegative solution (u, v) to system (1) uniformly bounded such that $(u, v) \in C\left([0, \infty),\left(W^{1, s}(\Omega)\right)^{2}\right) \cap C^{1}\left((0, \infty),\left(W^{1, s}(\Omega)\right)^{\prime} \times W^{1, s}(\Omega)\right)$ and $\|u\|_{L^{\infty}(\Omega)}+\|v\|_{L^{\infty}(\Omega)} \leq C<\infty$. Moreover, $\left\|u(x, t)-u^{*}(t)\right\|_{L^{2}(\Omega)} \rightarrow 0$ and $\left\|v(x, t)-v^{*}(t)\right\|_{L^{2}(\Omega)} \rightarrow 0$, as $t \rightarrow \infty$.

2. Proof of Theorem 1

The global existence of (u, v) over $\Omega \times(0, \infty)$ is a direct consequence of the local existence (following Theorem 6.4 in [5] and the Maximum Principle) and the uniform boundedness of (u, v) in L^{∞} established in the following lemma:

Lemma 2. Let hypotheses H1.-H3. hold. Then
(1) the total mass of the component u of the solution to (1) is bounded, i.e., $\int_{\Omega} u d x \leq \mathcal{C}_{1}, 0<\mathcal{C}_{1}<\infty$;
(2) there exist positive constants $\mathcal{C}_{2,3}$, depending only on $\|f\|_{L^{\infty}(\Omega)}$ and μ, such that for allt $\in\left(0, T_{\text {max }}-t_{0}\right)$ ($T_{\text {max }}>0$ is the maximal time $), t_{0}=\min \left\{1, T_{\text {max }} / 2\right\}, \int_{t}^{t+t_{0}} \int_{\Omega} u^{2} d x d s \leq \mathcal{C}_{2}, \int_{0}^{t} e^{s-t} \int_{\Omega} u^{2} d x d s \leq \mathcal{C}_{3}$.
(3) there exists positive constant \mathcal{C}_{4} depending on $\left\|u_{0}\right\|_{L^{\infty}},\|f\|_{L^{\infty}}, \mu, \chi$ and $\frac{0}{v}<\infty$ such that

$$
\begin{equation*}
\left(\int_{\Omega} u^{p}\left(e^{\chi v}\right)^{1-p} d x\right)^{\frac{1}{p}} \leq \mathcal{C}_{4} \quad \text { and } \quad v(x, t)<\bar{v} \tag{4}
\end{equation*}
$$

(4) function u is uniformly bounded in $L^{\infty}(\Omega)$ and $\|u\|_{L^{\infty}(\Omega)} \leq e^{\chi^{\bar{v}}} \mathcal{C}_{4}$.

Proof. The proofs of (1) and (2) are similar to that performed in [6] and [4], so we omit it here. We follow an iterative argument of Alikakos-Moser type in order to derive a bound for u. As in [6] and [7], we multiply the first equation in (1) by $u^{p-1} e^{-(1-p) \chi v}$ and integrate by parts over Ω. Since

$$
\int_{\Omega} u^{p-1} e^{\chi(1-p) v}(\Delta u-\chi \nabla(u \nabla v)) d x=-(p-1) \int_{\Omega} u^{p-2} e^{(1-p) \chi v}(\nabla u-\chi u \nabla v)^{2} d x<0,
$$

using the properties of h, by the Mean Value Theorem and Young's inequality, for every $p \geq 1$ and a positive $\epsilon:=\mu /\left(2 \mu+2 \mu\|f\|_{L^{\infty}}+2\right)$, we have
$\frac{d}{d t} \int_{\Omega} u^{p}\left(e^{\chi v}\right)^{1-p} d x \leq-\int_{\Omega} u^{p}\left(e^{\chi v}\right)^{1-p} d x+\frac{\mu}{2 \epsilon^{p+1}}-\frac{p \mu}{2} \int_{\Omega} u^{p+1}\left(e^{\chi v}\right)^{1-p} d x+c \chi(p-1) \int_{\Omega} u^{p}\left(e^{\chi v}\right)^{2-p} d x$.
By solving the differential equation, integrating in time and eliminating the nonpositive summand it yields

$$
\begin{aligned}
& \int_{0}^{t} e^{s-t} \int_{\Omega} u^{p+1}\left(e^{\chi v}\right)^{1-p} d x d s \leq \mathcal{C}_{5}^{p}:= {\left[\max \left\{\frac{6\left\|u_{0}\right\|_{L^{\infty}}}{\min \{1, \mu\}}, \frac{3}{\epsilon^{2}}, \frac{6 c \chi}{\mu}, \mathcal{C}_{3}, 1\right\}\right]^{p} } \\
& \int_{\Omega} u^{p}\left(e^{\chi v}\right)^{1-p} d x \leq \mathcal{C}_{4}^{p}:=\max \left\{3\left\|u_{0}\right\|_{L^{\infty}}, \frac{3 \mu}{2 \epsilon^{2}}, c \chi e \mathcal{C}_{5}\right\}^{p}
\end{aligned}
$$

In view of H2., we assume that for any $\bar{v}>\left\|v_{0}\right\|_{L^{\infty}(\Omega)}$ there exists $t_{0}>0$ such that $v\left(x, t_{0}\right)=\bar{v}$, which is the first t_{0} fulfilling this condition. Since $v_{0}<\bar{v}$, for \bar{v} large enough, we have that $v_{t}\left(t_{0}\right) \leq h\left(\mathcal{C}_{4} e^{\chi \bar{v}}, \bar{v}\right)<0$. With this contradiction, the proof of (3) is complete.

As a consequence of the previous bounds and taking limits when $p \rightarrow \infty$ we conclude (4).

Lemma 3. Assume H1.-H3. There exists a positive constant \mathcal{C}_{6} such that the following estimate holds

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{2} d x \leq \mathcal{C}_{6}<\infty \tag{5}
\end{equation*}
$$

Proof. Consider the functions

$$
\begin{equation*}
F_{1}:=\int_{\Omega} \frac{u}{u^{*}} d x-1+\ln u^{*}-\int_{\Omega} \ln u d x ; \quad F_{2}:=\ln \left(\int_{\Omega} u d x\right)-\ln u^{*} \tag{6}
\end{equation*}
$$

Functionals of quite a similar form have previously been used in several works on related chemotaxis problems, e.g., in [8]. Notice that $F_{1} \geq 0$ and $F_{2} \geq c_{0}$. After direct calculations we have

$$
\frac{d}{d t}\left(F_{1}+F_{2}+k \int_{\Omega}|\nabla v|^{2} d x\right) \leq \frac{d}{d t}\left(\frac{\int_{\Omega} u d x}{u^{*}}\right)+\mu\left\|f^{*}-f\right\|_{L^{1}(\Omega)}
$$

with $k:=\epsilon_{0} /\left(2 \mathcal{C}_{4}^{2}\left\|h_{u}\right\|_{L^{\infty}(\Omega)}\right)$ and ϵ_{0} as in H2., (for more details, see [6,9]). We divide by u^{*} in (3) and integrate over $(0, T)$, since

$$
u^{*} \geq \varepsilon_{1}>0, \quad \int_{0}^{\infty}\left\|f^{*}-f\right\|_{L^{1}(\Omega)} d t \leq c<\infty, \quad \int_{\Omega} \ln u d x \leq \int_{\Omega} u d x \leq \mathcal{C}_{1}<\infty
$$

we obtain (5).

Lemma 4. Under assumptions H1.-H3. we have that there exists $\varepsilon_{2}>0$ independent of t, such that

$$
\begin{equation*}
\int_{\Omega} u d x \geq \varepsilon_{2}, \quad \text { for any } t>0 \tag{7}
\end{equation*}
$$

Proof. We proceed as in Mizukami-Yokota [7] Lemma 4.2. and multiply the equation of u by $u^{-\beta} e^{\chi \beta v}$ for some $\beta \in(1,2)$. After integration by parts we obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x=\chi \beta \int_{\Omega} h(u, v) e^{\chi \beta v} u^{1-\beta} d x+(1-\beta) \beta \int_{\Omega} e^{\chi \beta v} u^{-1-\beta}|\nabla u-\chi u \nabla v|^{2} d x \\
& \quad+\mu(1-\beta) \int_{\Omega} e^{\chi \beta v} u^{1-\beta}(1+f-u) d x
\end{aligned}
$$

Since $\beta \in(1,2)$, we have that

$$
(1-\beta) \beta \int_{\Omega} e^{\chi \beta v} u^{-1-\beta}|\nabla u-\chi u \nabla v|^{2} d x \leq 0
$$

Notice that, by the Mean Value Theorem it yields $h(u, v)=h(0,0)+h_{u}\left(\xi_{1}, 0\right) u+h_{v}\left(u, \xi_{2}\right) v$, for some $\left(\xi_{1}, \xi_{2}\right)$. Assumption H1. implies

$$
\int_{\Omega} h(u, v) e^{\chi \beta v} u^{1-\beta} d x \leq h(0,0) \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x+c_{1} \int_{\Omega} e^{\chi \beta v} u^{2-\beta} d x,
$$

with $0<c_{1}<\infty$. Therefore we get
$\frac{d}{d t} \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x \leq \chi \beta h(0,0) \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x+\mu(1-\beta) \varepsilon \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x+\left[\mu(\beta-1)+c_{1}\right] \int_{\Omega} e^{\chi \beta v} u^{2-\beta} d x$.
Then

$$
\frac{d}{d t} \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x \leq[\chi \beta h(0,0)-\mu(\beta-1) \varepsilon] \int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x+c_{2}, \quad c_{2}>0 .
$$

In view of assumption H1. for β close enough to 2 , we get, by Maximum Principle that $\int_{\Omega} e^{\chi \beta v} u^{1-\beta} d x \leq c$ and the non-negativity of v implies $\int_{\Omega} u^{1-\beta} d x \leq \tilde{c}$, with positive constants c and \tilde{c}. We find a positive lower bound for $\int_{\Omega} u d x$ as in (7) by applying the Hölder inequality, i.e.,

$$
|\Omega|^{\frac{\beta}{\beta-1}}\left(\int_{\Omega} u^{1-\beta} d x\right)^{\frac{1}{1-\beta}} \leq \int_{\Omega} u d x
$$

Similar results can be found in [10] and [11] for parabolic-elliptic and fully parabolic systems (see also [12] for parabolic-ODE systems).

As in [4], in order to prove the convergence of the solution u to u^{*}, we proceed into two steps: first we get the convergence of the solution u to its average $\int_{\Omega} u$, to obtain later the convergence of the average to the periodic function u^{*}, the solution of the first equation in (3). We define the positive functions

$$
\begin{equation*}
K(t):=\int_{\Omega}\left(u-\int_{\Omega} u d x\right)^{2} d x \quad \text { and } \quad \tilde{K}(t):=\left(\int_{\Omega} u d x-u^{*}\right)^{2} . \tag{8}
\end{equation*}
$$

Lemma 5. Assume H1.-H3. There exists a positive constant \mathcal{C}_{6} such that the following estimate holds

$$
\begin{equation*}
\int_{0}^{\infty} K(t) d t \leq \mathcal{C}_{6}<\infty \tag{9}
\end{equation*}
$$

Proof. Consider F_{1} and F_{2} as defined in (6). After direct calculations we have

$$
\frac{d}{d t}\left(F_{1}+F_{2}+k \int_{\Omega}|\nabla v|^{2}\right)+K \leq \frac{d}{d t}\left(\frac{\int_{\Omega} u d x}{u^{*}}\right)+\mu\left\|f^{*}-f\right\|_{L^{1}(\Omega)},
$$

with $k:=\epsilon_{0} /\left(2 \mathcal{C}_{4}^{2}\left\|h_{u}\right\|_{L^{\infty}(\Omega)}\right)$ and ϵ_{0} as in H2., (for more details, see $\left.[6,9]\right)$. We divide by u^{*} in (3) and integrate over $(0, T)$ to obtain a lower bound, $\varepsilon_{1} \leq u^{*}$; moreover by Lemma 4 , we have $\int_{\Omega} u \geq \varepsilon_{2}$. After integration over $(0, T)$ and taking limits when $T \rightarrow \infty$, we obtain (9).

Lemma 6. Let H1.-H3. hold. Then,

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\Omega}|\nabla v|^{2} d x d t \leq \mathcal{C}_{7}<\infty, \quad \int_{0}^{\infty} \int_{\Omega}|\nabla u|^{2} d x d t \leq \mathcal{C}_{8}<\infty, \quad \int_{0}^{\infty} \tilde{K} d t \leq \mathcal{C}_{9} \int_{0}^{\infty} F_{2}^{2} d t<\infty \tag{10}
\end{equation*}
$$

for some positive constants $\mathcal{C}_{7}, \mathcal{C}_{8}$ and \mathcal{C}_{9}.
Proof. We proceed as in previous lemma,

$$
\begin{equation*}
\frac{d}{d t}\left(F_{1}+F_{2}+\int_{\Omega} \frac{\lambda_{0}}{2}|\nabla v|^{2}\right)+K+\frac{p_{0}}{4} \int_{\Omega} \frac{\lambda_{0}}{2}|\nabla v|^{2} \leq \frac{d}{d t}\left(\frac{\int_{\Omega} u d x}{u^{*}}\right)+\mu\left\|f^{*}-f\right\|_{L^{1}(\Omega)} \tag{11}
\end{equation*}
$$

with

$$
p_{0}:=\frac{4 \epsilon_{v}^{2}}{\mathcal{C}_{4}^{2}\left\|h_{u}\right\|_{L^{\infty}(\Omega)}^{2}} \quad \text { and } \quad \lambda_{0}=\frac{-2 h_{v}-\chi u h_{u}}{u^{2} h_{u}^{2}}
$$

and

$$
\int_{0}^{\infty} \int_{\Omega}|\nabla u|^{2} d x d t \leq\|u\|_{L^{\infty}(\Omega)}^{2} \int_{0}^{\infty} \int_{\Omega} \frac{|\nabla u|^{2}}{u^{2}} d x d t \leq \mathcal{C}_{8}<\infty
$$

moreover $d\left(F_{2}^{2}\right) / d t+2 \mu \xi F_{2}^{2} \leq\left|F_{2}\right| K(t)+\left|F_{2}\right| \mu\left\|f-f^{*}\right\|_{L^{1}(\Omega)} \leq 2 \mathcal{C}_{4}^{2}\left(K(t)+\mu\left\|f-f^{*}\right\|_{L^{1} \Omega}\right)$.
Then, after integration it results $\int_{0}^{\infty} F_{2}^{2} d t<\infty$. By Lemma 2, we have $\tilde{K} \leq \mathcal{C}_{9} F_{2}^{2}<\infty$. Therefore, after integration over $(0, \infty)$ in (11), we end the proof.

Now we apply a weaker version of Lemma 5.1 in Friedman-Tello [13],
Lemma 7. Let $k: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be a function satisfying $k(t) \geq 0, k^{\prime} \leq C$ for any $t \geq 0$, and $\int_{0}^{\infty} k(s) d s \leq C<\infty$, then, $k(t) \rightarrow 0$ as $t \rightarrow \infty$.

From a direct calculation we have $K^{\prime} \leq \mathcal{C}_{10}$ and $\tilde{K}^{\prime} \leq \mathcal{C}_{11}$, with two positive constants \mathcal{C}_{10} and \mathcal{C}_{11}. Hence, K and \tilde{K} verify the assumptions of Lemma 7 and then

$$
\left\|u-u^{*}\right\|_{L^{2}(\Omega)}^{2}=\int_{\Omega}\left|u-u^{*}\right|^{2} d x \leq K+\tilde{K} \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty
$$

We denote $z=v-v^{*}$. Then, by the assumptions on h and in view of the convergence rate for u we arrive at

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega} z^{2} d x \leq-\epsilon_{v} \int_{\Omega} z^{2} d x+\left\|h_{u} z\right\|_{L^{\infty}(\Omega)} \int_{\Omega}\left(u-u^{*}\right)^{2} d x
$$

By solving the differential inequality we get the convergence rate for v.
The uniform boundedness over $\Omega \times(0, \infty)$ and the convergence rates for the solution (u, v) to (1) immediately lead to Theorem 1.

Remark 1. As a consequence of Theorem 1, and in view of uniform bounds of u and v we conclude

$$
\left\|u(x, t)-u^{*}(t)\right\|_{L^{p}(\Omega)} \rightarrow 0 \quad \text { and } \quad\left\|v(x, t)-v^{*}(t)\right\|_{L^{p}(\Omega)} \quad \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty, \quad \text { for any } \quad p \in[1, \infty)
$$

Acknowledgment

This work was supported by Project MTM2017-83391-P, DGICT, MICINN Spain.

References

[1] A.R. Anderson, M.A. Chaplain, Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol. 60 (5) (1998) 857-899.
[2] H.A. Levine, B.D. Sleeman, A system of reaction diffusion equation arising in the theory of reinforced random walks, SIAM J. Appl. Math. 57 (1997) 683-730.
[3] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver. 105 (3) (2003) 103-165.
[4] M. Negreanu, J.I. Tello, A.M. Vargas, On a parabolic-elliptic chemotaxis system with periodic asymptotic behavior, Math. Methods Appl. Sci. (2018) 1-17.
[5] H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990) 13-75.
[6] M. Negreanu, J.I. Tello, On a parabolic-elliptic chemotactic system with non-constant chemotactic sensivity, Nonlinear Anal. 80 (2013) 1-13.
[7] M. Mizukami, T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations 261 (2016) 2650-2669.
[8] X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J. 65 (2) (2016) 553-583.
[9] M. Negreanu, J.I. Tello, A.M. Vargas, On a fully parabolic chemotaxis system with source term and periodic asymptotic behavior, Z. Angew. Math. Phys. 71 (2020) 65.
[10] Y. Tao, M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal. 47 (6) (2015) 4229-4250.
[11] Y. Tao, M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Equations 259 (2015) 6142-6161.
[12] M. Negreanu, J.I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations 258 (2015) 1592-1617.
[13] A. Friedman, J.I. Tello, Stability of solutions of chemotacis equations in reinforced random walks, J. Math. Anal. Appl. 272 (2002) 138-163.

[^0]: * Corresponding author.

 E-mail addresses: negreanu@mat.ucm.es (M. Negreanu), jtello@mat.uned.es (J.I. Tello), antonvar@ucm.es (A.M. Vargas).

