
Z. Angew. Math. Phys.           (2020) 71:65 
c© 2020 Springer Nature Switzerland AG
https://doi.org/10.1007/s00033-020-1282-0

Zeitschrift für angewandte
Mathematik und Physik ZAMP

On a fully parabolic chemotaxis system with source term and periodic asymptotic
behavior

M. Negreanu, J. I. Tello and A. M. Vargas

Abstract. We study a parabolic–parabolic chemotactic PDE’s system which describes the evolution of a biological population
“u” and a chemical substance “v” in a two-dimensional bounded domain with regular boundary. We consider a growth term
of logistic type in the equation of “u” in the form u(1 − u + f(x, t)), for a given bounded function “f” which tends to
a periodic in time function independent of x when t goes to infinity. We study the global existence of solutions and its
asymptotic behavior for a range of parameters and initial data.
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1. Introduction

In this article, we study a system of two coupled parabolic PDE’s modeling chemotaxis. Chemotaxis
is the capability of some living organisms to direct their movement in response to the presence of a
chemical gradient. This response can be either positive (chemoattractant) or negative (chemorepellent).
The individuals of the biological species are able to recognize the chemical signal “v,” to measure its
concentration and to move in the direction of the chemical gradient. The chemotactic process appears as
a common topic in biological studies, for instance the movement of some bacteria—such as E. coli—or
the movement of human blood neutrophils, see, e.g., [3].

Mathematical models of chemotaxis appeared in 1970 with the so-called Keller–Segel model (see
[15,16]) after Patlak [26]. A wide summary of mathematical results can be found in the surveys of
Horstmann [10,11] or Bellomo et al. [4].

We consider the following parabolic–parabolic system which describes the evolution of a biological
species “u” and a chemical substance “v” in a bounded domain Ω ⊂ R

2 with regular boundary:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= Δu − div(χu∇v) + μu(1 + f(x, t) − u), x ∈ Ω, t > 0,

τvt − Δv + v = u, x ∈ Ω, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Ω,

∂u

∂n
=

∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

(1.1)

where f(x, t) converges to a homogeneous in space and periodic in time function f∗(t). Here, the term
1 + f is related with the environmental carrying capacity of the system, frequently taken as a constant.
There are several examples in the nature of species with periodic behavior, for instance in the movement
of the amebas Dictyostelium discoideum toward its center of aggregation, the medium velocity is periodic
(see Steinbock, Hashimoto and Müller [27]), in Dunn and Zicha [6] it is observed periodicity in the
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chemotaxis of the human neutrophils and also it is referred in Zusman et al. [37] in the movement of the
Myxococcus xanthus. Once the value 1+f(x, t) is overcome by “u,” the logistic term has a negative effect
in the growth of the population “u.”

It is well known that the solutions of the minimal-chemotaxis-logistic system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= Δu − div(χu∇v) + au − bu2, x ∈ Ω, t > 0,

τvt − Δv + v = u, x ∈ Ω, t > 0,

∂u

∂n
=

∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(0, x) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

in a bounded smooth domain Ω ⊂ R
2 do not present blow-up for any a ∈ R, τ ≥ 0, χ > 0 and b > 0 (see

Osaki et al [25] for the two-dimensional case, Winkler [33] and Tello and Winkler [31] for the parabolic–
elliptic case). Nakaguchi and Osaki in [18] consider a fully parabolic system where the logistic term
presents a general form

μ(u − uθ), for θ > 1

and v satisfies the equation

τvt − Δv + v = g(u),

for g defined by

g(u) := u(1 + u)β , β ∈ (0, 2].

They prove that for n ≥ 2, the solution exists globally in time under the assumptions

β ≤ θ

2
, β <

n + 2
2n

(θ − 1).

For θ = β = 1 and n ≥ 2, the solutions may present blow-up. See also Tu and Qiu [32] and Winkler [36].
The one-dimensional problem

{
ut − εuxx = −(uvx)x + κu − μu2,

0 = vxx − v + u

in a bounded domain has been studied in Winkler [35]. The author obtained global existence of solutions
for μ ≥ 1, and some solutions blow up for μ < 1 in the limit case ε = 0. Later, Lankeit [17] extended the
result for the n-dimensional radially symmetric case. In Kang and Stevens [14], the authors generalize
the results to any convex domain in R

n, bounded or unbounded for ε = 0. In [14], the authors obtain
finite time blow-up for μ < 1.

In [39], the author replaces the logistic source au − bu2 with a kinetic term g(u) fulfilling g(0) ≥ 0,

lim inf
s→∞

{

−g(s)
ln s

s2

}

= μ1 ∈ (0,∞],

as well as

(χ − μ1)+M <
1

2C4
GN

,

where c+ = max{c, 0}, CGN is the Gagliardo–Nirenberg constant and

M = ||u0||L1(Ω) + |Ω| inf
η>0

sup{g(s) + ηs : s > 0}
η

.

In this setup, it is shown that this problem does not have any blow-up by ensuring all solutions are
global-in-time and uniformly bounded. Clearly, g covers sources like g(s) = as−bsθ with b > 0 and θ ≥ 2.
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In Issa and Shen [13], the authors consider a parabolic–elliptic chemotaxis system with a logistic term
in the form

u

⎛

⎝a1(x, t) − a2(x, t)u − a3(x, t)
∫

Ω

udx

⎞

⎠

in R
n. In [13], the case where the coefficients ai (for i = 1, 2, 3) are periodic in time is also considered.

For this case, the authors obtain the existence of periodic solutions. Similar results are obtained in [20].
In [24], we assumed τ = 0, obtaining a parabolic–elliptic system of PDE’s. We proved the existence

and uniqueness of the solution of the corresponding system, under assumption

χ < μ.

Also we obtain, under some assumptions on the initial conditions and f , that the solution presents the
following asymptotic behavior

lim
t→∞ ‖u − u∗‖L∞(Ω) + ‖v − u∗‖L∞(Ω) = 0,

where u∗ is the periodic in time function defined by

u∗(t) =
u∗

0e

t∫

0
μ(1+f∗(s))ds

1 + u∗
0μ

t∫

0

e

τ∫

0
μ(1+f∗(s))ds

dτ

, (1.2)

where

u∗
0 :=

e

T∫

0
μ(1+f∗(s))ds − 1

μ
T∫

0

e

τ∫

0
μ(1+f∗(s))ds

dτ

.

Notice that u∗ is the solution of the equation
du∗

dt
= μu∗(1 + f∗ − u∗). (1.3)

In this article, we study the problem for τ > 0 and obtain global existence of solution and its conver-
gence to u∗ by using an energy method instead of a comparison argument (see, for instance, [8,21–23]).
Throughout the paper, we use the notation Ωt := Ω×(0, t), for t ∈ (0,∞] and we work under the following
assumptions:

– The initial data (u0, v0) satisfy

(u0, v0) ∈ [
C2+β(Ω̄)

]2
, (1.4)

for some β > 0.
∂u0

∂n
=

∂v0

∂n
= 0, x ∈ ∂Ω. (1.5)

u0 ≥ 0, v0 ≥ 0. (1.6)
∫

Ω

ln(u0)dx ≥ −L > −∞. (1.7)

∫

Ω

u0dx > 0,

∫

Ω

v0dx > 0. (1.8)

Notice that the first statement in (1.8) is a consequence of (1.6) and (1.7).
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– There exists a positive constant ε1 > 0 such that

f(t, x) > −1 + ε1. (1.9)

– Function f satisfies

f ∈ Cβ,α
x,t (Ωx,t), (1.10)

for some α > 0.

sup
t>0

‖f‖L∞(Ω) := ‖f‖L∞(Ω∞) < ∞, (1.11)

∞∫

0

∫

Ω

|∇f |2dxdt ≤ c < ∞, (1.12)

∞∫

0

‖f − f∗‖L1(Ω)dt ≤ c < ∞, (1.13)

where f∗ = f∗(t) is independent of x and periodic in time of period T .
– The coefficients χ and μ fulfill

μ >
χ2

16
max

⎧
⎨

⎩

∫

Ω

u0dx,
1
μ

(1 + ‖f‖L∞(Ω∞))

⎫
⎬

⎭
. (1.14)

– For simplicity and without loss of generality, we assume

|Ω| = 1. (1.15)

The article is organized as follows: In Sect. 2, we present the results of existence and uniqueness of solutions
of system (1.1) under hypothesis (1.4)–(1.13) and (1.15). The proofs are based on Moser–Alikakos iteration
method [1]; since the result is standard and similar proofs can be found in the literature (see, for instance,
Winkler [33], Xiang [38]), we omit the details. In Sect. 3, we also assume (1.14) to prove that the solution
to the PDE’s system satisfies

lim
t→∞ ‖u − u∗‖L2(Ω) + ‖v − v∗‖L2(Ω) = 0,

in a two-step process. First, we obtain that the solution (u, v) goes to (ũ, ṽ) as t goes to ∞, where ũ, ṽ
are given by

ũ =
1

|Ω|
∫

Ω

udx, ṽ =
1

|Ω|
∫

Ω

vdx,

respectively. Secondly, we prove that (ũ, ṽ) converges to (u∗, v∗) where the known function u∗ is defined
in (1.2) and v∗ is the solution to

τ
dv∗

dt
= u∗ − v∗.

2. Existence and uniqueness of solutions

In this section, we present the results of global existence of solutions of (1.1). Our main result of this
section is the following.
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Theorem 2.1. Suppose Ω ⊂ R
2 is a bounded domain with smooth boundary. Let be τ > 0 and χ ∈ R.

Then, for all μ > 0, for any nonnegative u0 and v0 fulfilling assumptions (1.4)–(1.13), then (1.1) possesses
a uniquely determined global solution (u, v) for which both u and v are nonnegative and bounded in
Ω × (0,∞).

The proof follows a “Moser–Alikakos iteration method.” The local existence, uniqueness, and ex-
tendibility of classical solutions to (1.1) are obtained applying the well-known results of Amann [2]. The
proof is similar to the proof of [Lemma 3.3, [19]] or [Lemma 1.1, [33]], therefore we omit the details.

Lemma 2.1. Let Ω ⊂ R
2 be a bounded domain with regular boundary. Assume that the initial data (u0, v0)

are nonnegative, satisfying (1.4)–(1.13) such that 0 < u0 ∈ C0(Ω̄) and 0 < v0 ∈ W 1,∞(Ω̄). Then, there
exist Tmax ∈ (0,∞] and a unique pair of nonnegative functions (u, v),

u ∈ C(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)),
v ∈ C(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)) ∩ L∞

loc([0, Tmax);W 1,s(Ω)),

for s > 2

(u, v) ∈
[
C

2+β,1+ β
2

x,t (Ω̄ × [0, Tmax))
]2

,

which is the classical maximal solution of (1.1) on Ω×[0, Tmax). Furthermore, or Tmax = ∞ or, Tmax < ∞
and

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) → ∞ if t ↗ Tmax.

We control the W 1,q-bounds of v in terms of Lp-norms of u in order to get higher-order regularity of
u. For this purpose, we shall utilize the widely known smoothing Lp −Lq properties of the Neumann heat
semigroup {etΔ}t≥0 in Ω; see, for instance, [34]. Applying these heat Neumann semigroup estimates to
the v-equation in (1.1), we have the following widely known lemma, [[12], Lemma 4.1], [[9] Lemma 3.4],
for instance.

Lemma 2.2. For p ≥ 1, we consider
⎧
⎨

⎩

q ∈
[

1,
np

n − p

)

, if p ≤ n,

q ∈ [1,∞], if p > n.

(2.1)

Then, there exists C = C(p, q, v0,Ω) > 0 such that the unique global-in-time classical solution (u, v) to
(1.1) satisfies

||v(t)||W 1,q ≤ C(1 + sup
s∈(0,t)

||u(s)||Lp). (2.2)

The following auxiliary statement is applied to obtain the existence of solutions and the asymptotic
behavior. Since the proof is standard and similar to the proof of Lemma 2.3 in [28], we omit the details.

Lemma 2.3. Let T ≤ ∞ and α be positive constants, suppose that y is a nonnegative absolutely continuous
function on [0, T ) satisfying

{
y′ + αy ≤ g(t), for a.e. t ∈ (0, T ),
y(0) = y0,

for g, a nonnegative function satisfying
t+t0∫

t

g(s)ds ≤ C, for all t ∈ [0, T − t0)
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and t0 > 0. Then,

y ≤ max
{

y(0) + C,
C

α
+ 2C

}

, for all t ∈ (0, T ).

2.1. Basic a priori bounds for u and v

According to Theorem 2.1, in order to prove the global existence of (u, v) over Ω × (0,∞), we establish
the uniform boundedness of (u, v) in L∞(Ω). First, we present the estimates of u in Lp(Ω).
Now, we quote basic properties concerning the total mass of the population and the boundedness asser-
tions of the chemical.

Lemma 2.4. Suppose that (u, v) is the solution to (1.1), then, under assumptions (1.4), (1.5) and (1.13),
the solution (u, v) satisfies

u, v ≥ 0
∫

Ω

u(x, t)dx ≤ c1 := c1(u0, ||f ||L∞ , μ, |Ω|), ∀t ∈ [0, Tmax), (2.3)

∫

Ω

v(x, t)dx ≤ c2 := c2(||u||L1), ∀t ∈ [0, Tmax), (2.4)

t+t0∫

t

∫

Ω

u2(x, t)dxds ≤ max{1, t0}c3, ∀t ∈ [0, Tmax − t0), (2.5)

∫

Ω

|∇v(x, t)|2dx ≤ c4, ∀t ∈ [0, Tmax), (2.6)

t+t0∫

t

∫

Ω

|∇v(x, t)|2dxds ≤ max{1, t0}c4, ∀t ∈ [0, Tmax − t0), (2.7)

t+t0∫

t

∫

Ω

|Δv(x, t)|2dxds ≤ max{1, t0}c5, ∀t ∈ [0, Tmax − t0), (2.8)

with t0 = min{1, 1
6Tmax} and positive constants ci, i = 1, . . . , 5.

Since the proof of the previous inequalities is standard, we omit the details; see, for instance, [33].
Based on the previous boundedness, there are many common methods to get L2 boundedness of u,

∫

Ω

u2(x, t)dx ≤ c6, ∀t ∈ (0, Tmax) ∀t ∈ [0, Tmax) (2.9)

for some uniform constant c6 independent of t, i.e.,

c6 = c6(u0, v0, ||f ||L∞ , μ, |Ω|, CGN),

see, for instance, [25,29,38], among others.
As a consequence of the previous estimate, after standard computations we get

||u(t)||L3(Ω) ≤ c7, (2.10)

and

‖∇v‖L∞(Ω) ≤ c8, (2.11)
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for some positive constants c7 and c8, independent of t.
The inequality

‖u(·, t)‖Lq(Ω) ≤ cq (2.12)

is obtained by using an iterative method, for cq independent of t.
Finally, the global boundedness is obtain by using a Moser–Alikakos iteration. The result is presented in
the following lemma.

Lemma 2.5. Under hypothesis (1.4)–(1.5), there exists a positive constant C > 0, independent of t, such
that the solution of (1.1) satisfies

‖u(·, t)‖L∞(Ω) ≤ C, ∀t > 0. (2.13)

The proof is similar to the proof presented in [21], therefore we omit the details.

3. Asymptotic behavior

In this section, we address our study to asymptotic behavior of the solutions of problem (1.1). We obtain
that such solution converges to a homogeneous in space and periodic in time function u∗ defined in (1.2)
which satisfies equation (1.3)

du∗

dt
= μu∗(1 − u∗ + f∗).

For simplicity, we assume |Ω| = 1. The result is enclosed in the following theorem.

Theorem 3.1. Suppose Ω ⊂ R
2 is a bounded domain with smooth boundary, τ > 0 and χ ∈ R. Then,

for all μ > 0, for any nonnegative u0 and v0 fulfilling assumptions (1.4)–(1.13), the solution (u, v) to
problem (1.1) fulfills

‖u − u∗‖L2(Ω) + ‖v − v∗‖L2(Ω) → 0, as t → ∞, (3.1)

where v∗ is defined by the solution to

τ
dv∗

dt
= u∗ − v∗, v(0) =

∫

Ω

v0(x)dx.

As stated in the introduction, we divide this into two steps. We start with the convergence of (u, v)
to (ũ, ṽ).

Lemma 3.1. For u ∈ L∞(Ω∞) and |∇v| ∈ L∞(0, Tmax : L2(Ω)), there exists a positive constant c 2
3

> 0
such that

∫

Ω

udx ≥ c 2
3
.

The proof follows the proof of Theorem 1.1. in Tao and Winkler [30], therefore we omit the details.

Lemma 3.2. Let u∗ be the periodic solution to (1.3) of period T , then, there exists ε2 > 0 such that

u∗ > ε2.

Proof. We divide by u∗ in (1.3) and integrate over (0, T ) to obtain the equation

1
μ

u∗
t

u∗ + u∗ = 1 + f∗ ≥ ε1.
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We define ε2 := 1
2 max{u∗

0, ε1} and proceed by contradiction. Suppose that there exists t0 such that
u∗(t0) = ε2 and u∗(t) > ε2 for all t ∈ (0, t0) and

u∗
t (t0) ≤ 0. (3.2)

We replace in the equation to obtain

1
μ

u∗
t (t0)
ε2

+ ε2 ≥ ε1,

equivalent to

1
μ

u∗
t (t0)
ε2

≥ ε1 − ε2 ≥ 0,

which contradicts (3.2) and the proof ends. �

We now define the following function

k1(t) :=
∫

Ω

⎛

⎝u −
∫

Ω

udx

⎞

⎠

2

dx (3.3)

which is clearly a nonnegative function.
Recall that for simplicity and without loss of generality, we have assumed |Ω| = 1 in (1.15).

Lemma 3.3. Under assumptions of Theorem 3.1, we have
∞∫

0

k1(t)dt ≤ c < ∞, (3.4)

with a positive constant c.

Proof. We integrate the first equation of (1.1) over Ω to obtain

1
μ

d
dt

∫

Ω

udx =
∫

Ω

u(1 + f − u)dx

=
∫

Ω

(

u −
∫

Ω

udx

)

(1 + f − u)dx +
∫

Ω

udx

(

1 +
∫

Ω

fdx −
∫

Ω

udx

)

=
∫

Ω

(

u −
∫

Ω

udx

)(∫

Ω

udx − u

)

dx +
∫

Ω

(

u −
∫

Ω

udx

)

(f − f∗)dx

+
∫

Ω

u

(

1 + f∗ −
∫

Ω

udx

)

dx +
∫

Ω

u

(∫

Ω

(f − f∗)dx

)

dx.

Since f and f∗ are uniformly bounded, we have
∫

Ω

(

u −
∫

Ω

udx

)

(f − f∗)dx ≤ δk1 + c(δ)‖f − f∗‖L1(Ω),

for δ > 0 satisfying

(1 − δ)μ >
χ2

16
max

⎧
⎨

⎩

∫

Ω

u0dx,
1
μ

(1 + ‖f‖L∞)

⎫
⎬

⎭
.
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Therefore,

1
μ

d
dt

∫

Ω

udx ≤ −(1 − δ)k1 +
∫

Ω

u

⎛

⎝1 + f∗ −
∫

Ω

udx

⎞

⎠dx + c(δ)‖f − f∗‖L1(Ω).

By dividing the last inequality by
∫

Ω

udx, we arrive to

d
dt

ln

(∫

Ω

udx

)

≤ μ

[

− (1 − δ)k1∫

Ω

udx
+ 1 + f∗ −

∫

Ω

udx

]

+
μc(δ)
∫

Ω

udx
‖f − f∗‖L1(Ω). (3.5)

In the same fashion, we divide equation (1.3) by u∗ to obtain

d
dt

(ln u∗) = μ(1 + f∗ − u∗). (3.6)

Now, we subtract (3.6)–(3.5)

d
dt

(

ln

(∫

Ω

udx

)

− ln u∗
)

≤ μ

[

− (1 − δ)k1∫

Ω

udx
+ u∗ −

∫

Ω

udx

]

+
μc(δ)
∫

Ω

udx
‖f − f∗‖L1(Ω). (3.7)

For the sake of simplicity, let us consider the following functions

F1 :=
∫

Ω

u

u∗ dx − 1 + ln u∗ −
∫

Ω

ln udx; F2 := ln

⎛

⎝

∫

Ω

udx

⎞

⎠− ln u∗. (3.8)

Functionals of quite a similar form have previously been used in several works on related chemotaxis
problems, e.g., in [5].
Notice that h : R+ → R ∪ {∞} defined by

h(s) := s − 1 − ln s

satisfies h(s) ≥ 0 for any s > 0, and lims→0+ h(s) = +∞. Since

F1 =
∫

Ω

h
( u

u∗
)

dx

we have that F1 ≥ 0 and thanks to Lemma 3.1,

F2 ≥ −c > −∞, for any t > 0.
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Then,

d
dt

F1 =
d
dt

(
∫

Ω

udx

u∗

)

+ μ(1 + f∗ − u∗) −
∫

Ω

ut

u
dx

=
d
dt

(
∫

Ω

udx

u∗

)

+ μ(1 + f∗ − u∗)

+
∫

Ω

[

−|∇u|2
u2

+ χ
∇u∇v

u
− μ(1 + f − u)

]

dx

≤ d
dt

(
∫

Ω

udx

u∗

)

+ μ‖f∗ − f‖L1(Ω) + μ

(∫

Ω

udx − u∗
)

+
χ2

4

∫

Ω

|∇v|2

≤ d
dt

(
∫

Ω

udx

u∗

)

+ μ‖f∗ − f‖L1(Ω) + μ

(∫

Ω

udx − u∗
)

+
χ2

4

[

− d
dt

(
∫

Ω

(v − ∫

Ω

vdx)2dx

2

)

+

∫

Ω

(u − ∫

Ω

udx)2dx

4

]

.

Therefore, we have
d
dt

(F1 + F2) ≤ − μ(1 − δ)k1∫

Ω

udx
+ c‖f − f∗‖L1(Ω)

+
χ2

16
k1 +

d
dt

(
∫

Ω

udx

u∗

)

− χ2

8
d
dt

(
∫

Ω

(v − ∫

Ω

vdx)2dx

2

)

.

(3.9)

Now, since F1 ≥ 0, and F2 ≥ −c, after integration over (0, τ) we obtain
[

μ(1 − δ)

supt∈(0,τ)

{
∫

Ω

udx

} − χ2

16

] τ∫

0

k1dt ≤
[
∫

Ω

udx

u∗

]τ

0

+ cμ

τ∫

0

‖f − f∗‖L1(Ω)dt + c0 ≤ c.

Thanks to assumptions (1.14), selection of δ and Lemma 2.4, taking limits as τ → ∞, we obtain
∞∫

0

k1dt ≤ c < ∞ (3.10)

and the proof ends. �
Lemma 3.4. Under assumptions of Theorem 3.1, there exists a positive constant c < ∞ such that

∞∫

0

∫

Ω

|Δv|2 + |∇v|2dxdt ≤ c.

Proof. First we notice that, after integration in the second equation in (1.1), it yields
∫

Ω

udx =
∫

Ω

vdx + τ

∫

Ω

vtdx.
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Then, we have that

τvt − Δv + v −
∫

Ω

vdx = u −
∫

Ω

udx + τ

∫

Ω

vtdx.

We multiply by −Δv and integrate over Ω the previous equation, taking into account the following
identities

−
∫

Ω

⎛

⎝vt −
∫

Ω

vt

⎞

⎠Δvdx =
d
dt

1
2

∫

Ω

|∇v|2dx;

−
∫

Ω

⎡

⎣Δv

⎛

⎝v −
∫

Ω

vdx

⎞

⎠

⎤

⎦dx =
∫

Ω

|∇v|2dx

and

−
∫

Ω

⎡

⎣Δv

⎛

⎝u −
∫

Ω

udx

⎞

⎠

⎤

⎦dx ≤ 1
2

∫

Ω

|Δv|2dx +
1
2

∫

Ω

∣
∣
∣
∣
∣
∣
u −

∫

Ω

udx

∣
∣
∣
∣
∣
∣

2

dx

we get the inequality

d
dt

τ

2

∫

Ω

|∇v|2dx +
1
2

∫

Ω

|Δv|2dx +
∫

Ω

|∇v|2dx ≤
∫

Ω

∣
∣
∣
∣
∣
∣
u −

∫

Ω

udx

∣
∣
∣
∣
∣
∣

2

dx.

After integration over (0,∞) and thanks to Lemma 3.3, we obtain the wished result. �

Lemma 3.5. Under assumptions of Theorem 3.1, there exists a positive constant c < ∞, such that the
following inequality holds

∞∫

0

∫

Ω

|∇u|2dxdt ≤ c.

Proof. As in Lemma 3.3, we derivate F1 + F2 to obtain

d
dt

(F1 + F2) ≤ d
dt

(
∫

Ω

udx

u∗

)

+
∫

Ω

[

−|∇u|2
u2

+ χ
∇u∇v

u

]

dx

≤ d
dt

(
∫

Ω

udx

u∗

)

− 1
2

∫

Ω

|∇u|2
u2

dx +
χ2

2

∫

Ω

|∇v|2dx.

After integration, in view of Lemma 3.4, we obtain
∞∫

0

∫

Ω

|∇u|2
u2

dxdt ≤ c < ∞.

In view of the boundedness of u, we have
∞∫

0

∫

Ω

|∇u|2dxdt ≤ ‖u‖2
L∞(Ω)

∞∫

0

∫

Ω

|∇u|2
u2

dxdt ≤ c < ∞

and the proof ends. �
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Lemma 3.6. We assume that the hypotheses of Theorem 3.1 are fulfilled. There exists a positive constant
c < ∞, independent of t such that the following holds

∫

Ω

|∇u|2dx ≤ c.

Proof. We multiply the first equation (1.1) by −Δu and integrate by parts to obtain
d
dt

1
2

∫

Ω

|∇u|2dx +
∫

Ω

|Δu|2dx = χ

∫

Ω

Δu[∇u∇v + uΔv]dx − μ

∫

Ω

Δuu(1 + f − u)dx.

Since ∇v is uniformly bounded by (2.11), we have

χ

∫

Ω

Δu[∇u∇v + uΔv]dx ≤ 1
2

∫

Ω

|Δu|2dx + c9

∫

Ω

|∇u|2dx + c9

∫

Ω

|Δv|2dx

and

−μ

∫

Ω

u(1 + f − u)Δudx ≤ c10

2

∫

Ω

|∇u|2dx + c10

∫

Ω

∇u∇fdx ≤ c10

∫

Ω

|∇u|2dx +
c10

2

∫

Ω

|∇f |2dx,

with c9 and c10 positive constants independent of t. Then,
d
dt

1
2

∫

Ω

|∇u|2dx +
1
2

∫

Ω

|Δu|2dx ≤ (c9 + c10)
∫

Ω

|∇u|2dx +
c10

2

∫

Ω

|∇f |2dx + c9

∫

Ω

|Δv|2dx

After integration and thanks to assumption (1.12) and previous lemmas, we get the result. �

Lemma 3.7. Let k1 be defined in (3.3), then, under assumptions (1.4)–(1.14), there exists a positive con-
stant c̃2 < ∞ such that

|k′
1| ≤ c̃2, for t > 0.

Proof. In view of Lemma 2.1, we have that k1 ∈ C1(0,∞). Then, we get

d
dt

1
2

∫

Ω

⎛

⎝u −
∫

Ω

udx

⎞

⎠

2

dx =
∫

Ω

ut

⎛

⎝u −
∫

Ω

udx

⎞

⎠dx,

∫

Ω

ut

⎛

⎝u −
∫

Ω

udx

⎞

⎠dx = −
∫

Ω

|∇u|2dx + χ

∫

Ω

u∇u∇vdx

+
∫

Ω

⎛

⎝u −
∫

Ω

udx

⎞

⎠u(1 + f − u)dx.

Then, by applying the Young’s inequality we have
∣
∣
∣
∣
∣
∣
−
∫

Ω

|∇u|2dx + χ

∫

Ω

u∇u∇vdx

∣
∣
∣
∣
∣
∣
≤
∫

Ω

|∇u|2dx + c‖u‖2
L∞(Ω∞)

∫

Ω

|∇v|2dx.

Boundedness of u, assumption (1.11), Lemmas 2.1 and 3.6 imply the result. �

As a consequence of Lemma 3.3 and 3.7, we obtain the asymptotic behavior of the solutions by
applying Lemma 5.1 in Friedman–Tello [7]. For readers’ convenience, we reproduce the statement.

Lemma 3.8. (Lemma 5.1 Friedman–Tello [7]). Let k : [0,∞) → R be a C1 function such that
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(i) k(t) ≥ 0 and k(t) ≤ C0 < ∞ for some constant C0 > 0 in [0,∞);

(ii)

∞∫

0

k(t)dt ≤ C1 < ∞;

(iii) |k′| ≤ C2 < ∞ for some constant C2 > 0 in [0,∞).
Then k(t) → 0, as t → ∞.

Proof of Theorem 3.1. We consider k1 defined in (3.3), then, thanks to Lemma 3.7 we have that the
function k1 ∈ C1+α, for some α ∈ (0, 1). Due to Lemmas 3.3 and 3.7, we obtain that

‖u −
∫

Ω

udx‖L2(Ω) → 0, as t → ∞. (3.11)

Now, we define k2 as follows

k2(t) :=

⎛

⎝

∫

Ω

udx − u∗

⎞

⎠

2

and consider F2(t) defined in (3.8) by

F2(t) = ln
∫

Ω

udx − ln u∗.

So, by derivation we get

d
dt

F2 =

∫

Ω

utdx

∫

Ω

udx
− u∗

t

u∗ ,

which implies

d
dt

F2 = μ

⎛

⎜
⎝

∫

Ω

(uf)dx

∫

Ω

dx
−

∫

Ω

u2dx

∫

Ω

udx
+ u∗ − f∗

⎞

⎟
⎠ ,

= μ

⎛

⎝

∫

Ω

u(f − f∗)dx

∫

Ω

udx
−

∫

Ω

u(u − u∗)dx

∫

Ω

udx

⎞

⎠

and

d
dt

F2 +
μu∗
∫

Ω

udx

⎛

⎝

∫

Ω

udx − u∗

⎞

⎠ = μ

∫

Ω

u(f − f∗)dx

∫

Ω

udx
− μk1∫

Ω

udx
.

We multiply by F2 the previous inequality to obtain,

d
dt

1
2
F 2

2 +
μu∗
∫

Ω

udx

⎛

⎝

∫

Ω

udx − u∗

⎞

⎠F2 ≤ |F2|k1(t) + c‖f − f∗‖L1(Ω). (3.12)

Thanks to mean value theorem, we claim
⎛

⎝

∫

Ω

udx − u∗

⎞

⎠F2 = ξF 2
2 ,
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for some ξ ∈
[

u∗,
∫

Ω

udx

]

if u∗ <
∫

Ω

udx, or ξ ∈
[
∫

Ω

udx, u∗
]

, otherwise. As a consequence of Lemma 3.1

and Lemma 3.2, we get

μu∗
∫

Ω

udx

⎛

⎝

∫

Ω

udx − u∗

⎞

⎠F2 ≥ cF 2
2

for some positive constant c. After integration in (3.12), it results
∞∫

0

F 2
2 dt ≤ c < ∞.

Notice that, due to Lemma 2.4, we have

k2 ≤ cF 2
2 ,

for some positive constant c and it implies with the previous bound of F 2
2 that

∞∫

0

k2dt ≤ c < ∞. (3.13)

In view of Lemma 2.4, (1.11) and (1.2), we have that
∣
∣
∣
∣
∣
∣

∫

Ω

udx

∣
∣
∣
∣
∣
∣
< c, |u∗| < |u∗

0| + 1 + ‖f‖L∞(Ω∞),

|u∗
t | ≤ μ(|u∗

0| + 1 + ‖f‖L∞(Ω∞))(1 + ‖f‖L∞(Ω∞))

and
∣
∣
∣
∣
∣
∣

∫

Ω

utdx

∣
∣
∣
∣
∣
∣
≤ μ‖u‖L∞(Ω∞)((1 + ‖f‖L∞(Ω∞) + ‖u‖L∞(Ω∞)).

Since

k′
2 = 2

⎛

⎝

∫

Ω

udx − u∗

⎞

⎠

⎛

⎝

∫

Ω

utdx − u∗
t

⎞

⎠ ,

it is easy to see that

|k′
2| ≤ c < ∞. (3.14)

Now, by [Lemma 5.1 Friedman–Tello [7]], (3.13) and (3.14) we obtain

k2 → 0 as t → ∞. (3.15)

Since
∫

Ω

|u − u∗|2dx ≤ k1 + k2,

by relations (3.11) and (3.15), we get

‖u − u∗‖L2(Ω) → 0, as t → ∞.

To obtain

‖v − v∗‖L2(Ω) → 0, as t → ∞,
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we proceed as before and we define

k3 :=
∫

Ω

|v − v∗|2dx.

We take squares in both sides of the equation

τ
d
dt

(v − v∗) − Δv + (v − v∗) = u − u∗

and integrate over Ω

∫

Ω

∣
∣
∣
∣τ

d
dt

(v − v∗)
∣
∣
∣
∣

2

dx +
d
dt

τ

⎡

⎣
1
2

∫

Ω

|v − v∗|2 dx +
1
2

∫

Ω

|∇v|2 dx

⎤

⎦

+
∫

Ω

|Δv|2 dx +
∫

Ω

|∇(v − v∗)|2 dx +
∫

Ω

|(v − v∗)|2 dx ≤
∫

Ω

|u − u∗|2dx.

After integration in time, we claim
∞∫

0

∫

Ω

∣
∣
∣
∣τ

d
dt

(v − v∗)
∣
∣
∣
∣

2

dxdt +
τ

2
k3 +

1
2

∫

Ω

|∇v|2 dx +

∞∫

0

k3dt ≤ c,

i.e.,
∞∫

0

k3dt ≤ c. (3.16)

We multiply by −Δvt and integrate over Ω × (0,∞) the second equation of (1.1) to obtain

τ

2

∞∫

0

∫

Ω

|∇vt|dxdt +
∫

Ω

|Δv|2dx +
∫

Ω

|∇v|2dx ≤ 2

∞∫

0

∫

Ω

|∇u|2dxdt + c(u0) < c.

In the same fashion, it yields
∫

Ω

∣
∣
∣
∣τ

d
dt

(v − v∗)
∣
∣
∣
∣

2

dx ≤ c

∫

Ω

|Δv|2 dx + c

∫

Ω

|v − v∗|2 dx + c

∫

Ω

|u − u∗|2dx ≤ c

and therefore

|k′
3| ≤ 1

2

∫

Ω

∣
∣
∣
∣τ

d
dt

(v − v∗)
∣
∣
∣
∣

2

dx +
1
2

∫

Ω

|(v − v∗)|2 dx ≤ c. (3.17)

Relations (3.16), (3.17) and Lemma 5.1 in Friedman–Tello [7] end the proof. �
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