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Abstract. In this article we consider a coupled system of differential equations

to describe the evolution of a biological species. The system consists of two

equations, a second order parabolic PDE of nonlinear type coupled to an ODE.
The system contains chemotactic terms with constant chemotaxis coefficient

describing the evolution of a biological species “u” which moves towards a

higher concentration of a chemical species “v” in a bounded domain of Rn. The
chemical “v” is assumed to be a non-diffusive substance or with neglectable

diffusion properties, satisfying the equation

vt = h(u, v).

We obtain results concerning the bifurcation of constant steady states under

the assumption
hv + χuhu > 0

with growth terms g. The Parabolic-ODE problem is also considered for the

case hv + χuhu = 0 without growth terms, i.e. g ≡ 0. Global existence of

solutions is obtained for a range of initial data.

1. Introduction. Haptotaxis is the directional motility of living organisms to-
wards a gradient of a chemical concentration by adhesion, in contrast to chemotaxis,
where the chemoattractant develops in a soluble environment. The process has been
extensively studied from a biological point of view from the invention of microscope
in the XIX century. In the last decades, several mathematical models have been
presented to describe the phenomenon, after the pioneering works of Patlak [36] and
Keller and Segel [14] in chemotaxis (see also the review articles Horstmann [12], [13]
or Bellomo et al [5]), haptotaxis models have been presented in the last decades, see
for instance Othmer and Stevens [37], Levine and Sleeman [22], Stevens [40] and
Anderson and Chaplain [1], among others.

The original model in [14] describes the evolution of a biological species, denoted
by “u” and the distribution of chemical concentration “v” in a coupled system of
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two second order parabolic equations. The system is presented as follows{
ut = du∆u− div(uχ(v)∇v) + g(u, v),

vt = dv∆v + h(u, v),
(1)

with appropriate boundary conditions and initial data. In (1), diffusion is consi-
dered for the chemical, nevertheless, several biological processes involving direc-
tional movement towards a higher concentration of chemical agents present non-
diffusive chemical substance. In Anderson and Chaplain [1], a system of 3 equations
is proposed to describe angiogenesis in tumor growth. The system in [1] considers
the concentration of endothelial cells, whose movement towards a higher concentra-
tion of Tumor Angiogenesis Factor (TAF) depends on the distribution of fibronectin
in the extracellular matrix. The fibronectin is a molecule set in the extracellular
matrix which doesn’t present diffusion. In [1], the concentration of fibronectin is
described in terms of an ODE, see also Sleeman and Levine [38], Kubo and Suzuki
[19] and Kubo, Hoshino and Kimura [18] for Parabolic-ODE systems of angiogenesis
with chemotactic terms.

Haptotaxis is also presented in other biological processes, as morphogenesis, the
formation of organs and shapes in the embryo of animals. Starting with the pioneer-
ing work of Turing [47], several models of PDEs have been introduced to describe
the process in developing biology, see for instance Ma logrosz [26] and [27], Tello [45],
Muñoz and Tello [31], Krżyzanowski, P. Laurençot and P. Wrzosek [17]. In Merking
and Sleeman [28], Merking, Needham and Sleeman [29] and Bollenbach et al [4],
models of morphogenesis are described in terms of PDEs with chemotactic terms,
see also Stinner, Tello and Winkler [41] for the mathematical results concerning
global existence and linear stability of the model proposed in [4].

The mathematical model of haptotaxis doesn’t present diffusion term in the
equation, as the Keller-Segel model does. The system is as follows

ut −∆u = −div(χu∇v) + g(u, v), in Ω× (0, T ),
vt = h(u, v), in Ω× (0, T )
∂u

∂~n
= 0, in ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), in Ω

(2)

where the symbol ∂/∂~n denotes the derivative with respect to the outer normal of
∂Ω. To complete the problem, the initial data satisfy

u0, v0 ∈ C2+α(Ω),
∂v0

∂~n
= 0, x ∈ ∂Ω (3)

for some α ∈ (0, 1). In the above equations we have considered that Ω ⊂ Rn is a
bounded domain with smooth boundary ∂Ω.

System (2) is studied in Friedman and Tello [10], under assumptions

huuχ+ hv < 0, (4)

without growth terms (i.e. g ≡ 0). In [10], the global existence and the asymptotic
behavior is obtained for a general case of non-constant coefficients χ.

The model proposed in Levine, Sleeman and Nilsen-Hamilton [24] is studied in
Fontelos, Friedman and Hu [9] for an one-dimensional domain.

The system for g ≡ 0 has been also studied in Suzuki [43], [44] and Sleeman and
Levine [39], for different type of functions h which appears in the context of a tumor
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growth. In [39] the stability of non-constant solutions is also studied for the case

vt − ε∆v = h(u, v).

In Kubo and Tello [20] the system with competitive terms is studied when

g(u, v) = µ1u(1− u− a1v), h(u, v) = µ2u(1− a2u− v),

for weak competition, i.e., ai ∈ (0, 1), for i = 1, 2. Under suitable assumptions for
the chemotactic coefficients, the global existence of solutions and the stability of
the constant steady states are obtained by using an energy method.

Systems with several biological species have been also considered from a math-
ematical point of view, see Lauffenburger [21], Fasano et al [8], Conca and Espejo
[6], Black [2], Black et al [3], Hirata, Kurima, Mizukami, Yokota [11], Tello and
Winkler [46], Stinner, Tello and Winkler [42], Negreanu and Tello [34], [32] Wang
and Wu [48], among others. In Negreanu and Tello [35], the following haptotaxis
system is considered

ut = ∆u−∇ · (uχ1(w)∇w) + µ1u(1− u), x ∈ Ω, t > 0,

vt = ∆v −∇ · (vχ2(w)∇w) + µ2v(1− v), x ∈ Ω, t > 0,

wt = h(u, v, w), x ∈ Ω, t > 0,

where h satisfies

∂h

∂u
≥ εu > 0 and

∂h

∂v
≥ εv > 0,

∂h

∂w
< 0

and

0 < k0i ≤ χi(w)e

∫ w

w

χi(s)ds
, (i=1,2).

In [35], the authors obtain the global existence and the asymptotic behavior of the
solutions for a range of parameters and initial data. See also [30] and [25].

In this article we consider the situation, where assumption (4) is not satisfied.
Two cases are studied

Case I. huuχ+ hv > 0.
Case II. huuχ+ hv = 0.

Case I is considered with growth terms g under assumptions:
There exists (u∗, v∗) strictly positive homogeneous steady state of the system

(2), i.e.,

g(u∗, v∗) = 0, h(u∗, v∗) = 0 (5)

and there exists an open set A ⊂ R2, containing the steady state (u∗, v∗), such that

g, h ∈ C2(A), (6)

hu > 0, hv < 0 in A, (7)

∂h

∂v
+ χu

∂h

∂u
> 0 in A, (8)

guhv − gvhu > 0 in A, (9)

are satisfied for χ ∈ (χn − ε, χn + ε) for a given χn.
In Section 2 we consider the stationary states and study the bifurcation of solu-

tions to prove the existence of nontrivial steady states for a range of parameters,
the proof is a consequence of a Bifurcation Theorem for Fredholm Operators (see
for instance [16], Theorem II 4.4).
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Notice that the linear stability of the dynamical system
du

dt
= g(u, v), in (0, T ),

dv

dt
= h(u, v), in (0, T )

(10)

is defined by the eigenvalues of the matrix(
gu(u∗, v∗) gv(u

∗, v∗)
hu(u∗, v∗) hv(u

∗, v∗)

)
(11)

whose determinant is given by

Det := gu(u∗, v∗)hv(u
∗, v∗)− gv(u∗, v∗)hu(u∗, v∗).

The assumption huuχ + hv < 0 for a regular function h guarantees the global
existence of solutions provided the initial data are regular enough (see Friedman-
Tello [10]), nevertheless, if h satisfies huuχ+hv > 0, the global existence of solutions
is unclear. Local existence of solutions can be obtained as in [10] by using a fixed
point argument. Uniqueness of solutions is a consequence of the regularity of h and
g.

In Section 3, the parabolic-ode problem is studied for Case II under the assump-
tions

∂h

∂v
+ χu

∂h

∂u
= 0, (12)

which gives us an expression of h in the form h(u, v) = h̃(ue−χv), where h̃ satisfies

h̃ ∈ C2(R), (13)

h̃′ > 0. (14)

There exists a nonnegative homogeneous steady state w∗ = u∗e−χv
∗
, satisfying

h(w∗) = 0. (15)

The results achieved give global existence of solutions under the assumption

−h− uχe−χvh′ < 0, if |ue−χv − w∗| ≤ ε
for some positive ε. The proof of the global existence and the asymptotic stability
of the solutions for case II is based in the rectangle method. We notice that the
method is not profitable in case I.

2. Steady states: Bifurcation from constant steady states. The steady
states of the system satisfy the equation{

−∆u = −div(χu∇v) + g(u, v), in Ω,
h(u, v) = 0, in Ω.

(16)

By assumption (8) and Implicit Function Theorem we may write v as a function of
u, i.e.,

v = φ(u). (17)

Since h(u, φ(u)) = 0, derivating respect to u, we get

φ′(u) = −hu
hv
.

We replace in the equation to obtain

− div [(1− χuφ′(u))∇u] = g(u, φ(u)). (18)
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Recalling that φ′(u) = −hu/hv we have

− div 1

hv
[(hv + χuhu(u))∇u] = g(u, φ(u)). (19)

We denote by ψ the solution to the equation

ψ′(u) =
1

hv
(hv + χuhu(u)) = 1− χuφ′(u).

Since ψ′ 6= 0 and sign(ψ′) = sign(hv) we write the equation in the following way
−∆ψ = F (ψ, χ), x ∈ Ω,

∂ψ

∂~n
= 0 x ∈ ∂Ω,

(20)

where F (ψ(u, χ), χ) = g(u, φ(u)).
Problem (20) can be expressed as follows

G(ψ, χ) := ∆ψ + F (ψ, χ) = 0

with ψ ∈ X, for

X :=

{
w ∈W 2,p(Ω) :

∂w

∂~n
= 0, for some p < n

}
.

Let Σ be the set of eigenvalues of −∆ with homogeneous Neumann boundary
conditions defined on X, i.e.,

Σ :=

∞⋃
n=0

{λn}

and let u∗, v∗ be defined in (5) as the constant steady states of the system. We
denote by ψ∗ the corresponding steady states of problem (20) i.e. ψ∗ = ψ(u∗). In
the same way we define φ∗ by

φ∗ = φ(u∗).

Theorem 2.1. Let χn defined by

χn =
hv(u

∗, v∗)gu(u∗, v∗)− gv(u∗, v∗)hu(u∗, v∗)− hv(u∗, v∗)λn
λnu∗hu(u∗, v∗)

,

and equivalently

hv(u
∗, v∗)gu(u∗, v∗)− gv(u∗, v∗)hu(u∗, v∗)

hv(u∗, v∗) + χ0u∗hu(u∗, v∗)
= λn,

where λn ∈ Σ with odd multiplicity. Then, under assumption (6)-(7), there exists
a continuous component of solution S := (ψ(χ), χ) to (20) in X × (χn − ε, χn + ε)
such that (ψ∗, χn) ∈ S and (ψ(χ), χ) is a nontrivial solution of (16) for χ 6= χn.

Proof. We notice that

∂G

∂ψ

∣∣∣∣
ψ=ψ∗

ξ = ∆ξ +
∂F

∂ψ

∣∣∣∣
ψ=ψ∗

ξ.

To compute ∂F
∂ψ we consider the following derivative

dF

du
=
∂F

∂ψ

∂ψ

∂u
=
∂F

∂ψ

(
1

hv
(hv + χuhu(u))

)
.
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Since F (ψ(u), χ) = g(u, φ(u) and

d

du
g(u, φ(u))

∣∣∣∣
u=u∗

= gu + gvφ
′ =

1

hv
(hvgu − gvhu) < 0

we get that
∂F

∂ψ
=
hvgu − gvhu
hv + χuhu

. (21)

Then

• (ψ∗, χ) for χ ∈ (χn − ε, χn + ε) is a trivial solution of (20).
• G : X × (χn − ε, χn + ε)×X → Lp(Ω) is a continuos function.
•

∂G

∂ψ
∈ C(X × (χn − ε, χn + ε) : L(X,Lp(Ω)))

•
∂G

∂ψ

∣∣∣∣
ψ=ψ∗

satisfies
– is closed for each χ ∈ (χn − ε, χn + ε);
– is a Fredholm operator of index zero for each χ ∈ (χn − ε, χn + ε), i.e.

dim Ker

(
∂G

∂ψ

∣∣∣∣
ψ=ψ∗

)
− codim R

(
∂G

∂ψ

∣∣∣∣
ψ=ψ∗

)
= 0;

– 0 is an isolated eigenvalue.
•

∂G

∂ψ

∣∣∣∣
ψ=ψ∗

has an odd crossing number at χ = χn.

In view of Theorem II.4.4. [16], (ψ∗, χn) is a bifurcation point and there exists at
least a continuous set of nontrivial solutions S = (ψ(χ), χ), and the proof ends.

Remark 1. We notice that the case

hv + χuhu < 0 (22)

has been studied in Friedman-Tello [10]. (22) implies that

∂F

∂ψ
=

hvgu − gvhu
hv + χuhu(u)

< 0

provided (9) is satisfied. Therefore we have uniqueness of solutions and bifurcation
may not occur.

2.1. Examples. In order to apply Theorem 2.1, odd multiplicity of the eigenvalues
of “−∆” is required. We take Ω = (0, L), for L > 0 which guarantees the odd
multiplicity of the eigenvalues and the assumption is satisfied.

Example 1. In [23] the authors studied the following system
ut −∆u = −div(χu∇v) + g(u, v), in Ω× (0, T ),
vt = h(u, v), in Ω× (0, T )
∂u

∂~n
= 0, in ∂Ω,

u(0, x) = u0(x), v(0, x) = v0(x), in Ω
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for g = 0 and h given by

h =
k1uv

k2 + v
− av

for positive parameters k1, k2 and a. The system describes the evolution of
Dictyostelium discoideum density “u” and cAMP (extracelular cyclic Adeno-
sine Monophosphate concentration) produced by the cells. The term is a ver-
sion of the Michaelis-Menten rate law (see also Edelstein-Keshet [7] p. 276).
We include a logistic growth term in the form

g(u, v) = µu(1− u),

for a positive µ. Under assumption

k1 − k2a > 0, χ0 >
a

k1k2

we have that

u∗ = 1, v∗ =
k1 − k2a

a
is a positive steady state and

hu(u∗, v∗) =
k2

k1
(k1 − k2a) > 0, hv(u

∗, v∗) =
a(k2a− k1)

k1
< 0

hv(u
∗, v∗) + χu∗hu(u∗, v∗) =

a(k2a− k1)

k1
+
k2χ

k1
(k1 − k2a)

=
(k1 − k2a)k2

k1

(
χ− a

k1k2

)
> 0.

gu(u∗, v∗)hv(u
∗, v∗)− gv(u∗, v∗)hu(u∗, v∗) = −µa(k2a− k1)

k1
> 0.

We have that assumptions (5)-(9) are satisfied, therefore for any λn ∈ Σ, there
exists

χn :=
µa+ aλn
λnk1

and a continuous component of solutions (un(χ), vn(χ), χ) such that (u∗, v∗,
χn) ∈ (un(χ), vn(χ), χ) and (u(χ), v(χ), χ) is a nontrivial solution for χ ∈
(χn − ε, χn + ε), χ 6= χn.

Example 2. Let us consider for problem (2) the C2(R2) class functions h(·, ·) and
g(·, ·) given by

h(u, v) = f1(u)− v (23)

and

g(u, v) = −χuv + f2(u) (24)

where f1,2 ∈ C2(R) are two chosen functions. h and g satisfy,

χf1(s) + χsf ′1(s)− f ′2(s) 6= 0, for any s > 0 (25)

f ′1(s) >
1

χs
, for any s > 0 (26)

χsf ′1(s)− f ′2(s) > 0, for any s > 0 (27)

and there exists s∗ > 0 such that

χs∗f1(s∗)− f2(s∗) = 0. (28)

Therefore hypothesis (5)–(9) are verified.
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Dynamical system (10) presents the steady states (u∗, v∗) defined implicitly
by

v∗ = f1(u∗),

and

χu∗f1(u∗) = f2(u∗).

In view of (25), the function l(s) := χsf1(s) − f2(s) is a monotone function
for s > 0 and thanks to (28) there exists an unique u∗. Thanks to Theorem
2.1 we conclude that for any λn ∈ Σ, there exists χ = χn

χn =
µa+ aλn
λnk1

and a continuous component of solutions (un(χ), vn(χ), χ) such that (u∗, v∗,
χn) ∈ (un(χ), vn(χ), χ) and (u(χ), v(χ), χ) is a nontrivial solution for χ ∈
(χn − ε, χn + ε), χ 6= χn.

Example 3. A particular case to solve problem (2) is considering the functions h
and g defined as follows

h(u, v) =
α

χ
ln(u)− v, with α > 1 (29)

and

g(u, v) = u(β − u− χv), with β < 2, (30)

for α and β satisfying

α > β.

We notice that
∂h

∂v
= −1,

∂h

∂v
+ χu

∂h

∂u
= α− 1 > 0, ∀ α > 1,

and

guhv − gvhu = −(β − 2u− χv) + χu
α

χu
= 2u+ χv + α− β > 0,

for α > β. In this case, the steady states (u∗, v∗) of the dynamical system (10)
satisfy {

v∗ =
α

χ
lnu∗,

v∗ = β − u∗,
(31)

and in view of monotonicity of the function

l(s) := s+
α

χ
ln s− β

for s > 0 we have the existence of a unique steady state u∗ defined explicitly
by l(u∗) = 0 and v∗ = β − u∗.

As the the previous examples, we conclude that for any λn ∈ Σ, there exists
χn defined by

χn :=
µa+ aλn
λnk1

and a continuous component of solutions (un(χ), vn(χ), χ) such that (u∗, v∗,
χn) ∈ (un(χ), vn(χ), χ) and (u(χ), v(χ), χ) is a nontrivial solution for χ ∈
(χn − ε, χn + ε), χ 6= χn.
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3. Evolution problem for the limit case hv +χuhu = 0, g = 0. In this section
we consider the case II, where h satisfies

hv + χuhu = 0 (32)

for

g ≡ 0. (33)

(32) is a linear first order partial differential equation whose solution is given by

h(u, v) := h̃(ue−χv), (34)

where h̃ ∈ C1(R) is any function satisfying

h̃(w∗) = 0, for w∗ = u∗e−χv
∗
> 0. (35)

For simplicity in the notation we drop the tilde and consider h = h(ue−χv). We
also assume that there exists ε > 0 such that

− h− ue−χvh′ < 0, for |ue−χv − w∗| ≤ ε. (36)

Assumption (36) is satisfied, for instance by

h(ue−χv) = ln(u)− χv − ln(w∗), for any ε < e−w
∗

or by

h(ue−χv) = ue−χv − w∗, for any ε < w∗

for a range of χ.
Under assumptions (32) and (33), system (2) becomes

ut −∆u = −div(χu∇v), in Ω× (0, T ),

vt = h(ue−χv), in Ω× (0, T ),

∂u

∂n
= 0, in ∂Ω,

u(0, x) = u0(x), in Ω,

v(0, x) = v0(x), in Ω

(37)

where the initial data satisfy

u0, v0 ∈ C2+α(Ω), (38)

for some α ∈ (0, 1). Then, there exist positive constants 0 < u0 ≤ u0 such that

0 < u0 ≤ u0 ≤ u0 <∞, x ∈ Ω, (39)

∂u0

∂n
=
∂v0

∂n
= 0, in ∂Ω. (40)

Notice that, under assumption (40), the solution satisfies the boundary condition

∂u

∂n
− χu∂v

∂n
= 0. (41)

We introduce the change of unknown

u = eχvw

to obtain

h(ue−χv) = h(w),

ut = eχvwt + χvte
χvw = eχvwt + χeχvwh(w)

−∆u = −χdiv(eχvw∇v)− eχv∆w − eχvχ∇v∇w.
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System (37) becomes,

wt −∆w − χ∇v∇w = −χwh(w), in Ω× (0, T ),

vt = h(w), in Ω× (0, T ),

∂w

∂n
= 0, in ∂Ω,

w(0, x) = w0(x), in Ω,

v(0, x) = v0(x), in Ω.

(42)

In order to prove the global existence of solutions, we first obtain some a priori
bounds in L∞(Ω). The L∞(Ω) result is enclosed in Lemma 3.2, where the rectangle
method is applied (see Negreanu and Tello [33] for more details). To apply the
method, we first need some estimates enclosed in the following lemma.

Lemma 3.1. Under the assumption (32)-(33) and (12)-(15), if (w, v) is a solution
of (42), then

|vxi |2 ≤
∫ t

0

et−τ |h′|2|wxi |2dτ + et|v0xi |2.

Proof. We derivate the equation vt = h(w) respect to xi to obtain

vxit = h′wxi ;

multiplying the above identity by vxi and thanks to Young inequality, we have

d

dt
|vxi |2 ≤ |h′|2|wxi |2 + |vxi |2.

After integration in time, it results

|vxi |2 ≤
∫ t

0

et−τ |h′|2|wxi |2dτ + et|v0xi |2,

which ends the proof. �

Lemma 3.2. Under the assumption (32)-(33) and (12)-(15), if (w, v) is a solution
of (42) and w0 = u0e

−χv0 satisfies

|w0 − w∗| < ε, x ∈ Ω

for ε defined in (36), there exist spatially homogeneous functions w1, w2 ∈ C1([0,
∞)) satisfying

0 < w1(0) ≤ w0(x) ≤ w2(0) <∞

such that

0 < w1(t) ≤ w∗ ≤ w2(t) <∞, t ≥ 0,

|wi(t)− w∗| → 0 as t→∞, (for i = 1, 2)

and

w1(t) ≤ w(x, t) ≤ w2(t), for t ≥ 0, x ∈ Ω. (43)
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Proof. First, we notice that in the first equation of (42), the righthand-side term
−χwh(w) is independent of v and thanks to assumption (36)

d

dw
(−χwh(w)) = −χ(h− wh′) < 0;

then, the solution to the equation{
w′ = −χwh(w)
w(0) = w0

(44)

(for a given constant w0) is also a solution to

wt −∆w − χ∇v∇w = −χwh(w).

Now, we consider “w”, the solution to (44) with initial datum satisfying

w0 ≥ max{‖w0‖L∞(Ω), w∗}, (45)

and the new variable
W = w − w,

verifying the following equation:

Wt −∆W − χ∇v∇W = −χwh(w) + χwh(w).

We multiply by W+ and integrate by parts to obtain

1

2

d

dt

∫
Ω

W 2
+ +

∫
Ω

|∇W+|2 +

∫
Ω

W∇v∇W+ ≤
∫

Ω

−[χh(ξ) + ξh′(ξ)]W 2
+. (46)

Since ∫
Ω

W+∇v∇W ≤
1

2

∫
Ω

W 2
+|∇v|2 +

1

2

∫
Ω

|∇W+|2

and thanks to Lemma 3.1 we get∫
Ω

W 2
+|∇v|2 =

∫
Ω

W 2
+

[∫ t

0

et−τ |h′|2|∇w|2dxdτ + et|∇v0|2
]
.

In view of (3) and (13) we have∫
Ω

W 2
+|∇v|2 ≤ k

∫
Ω

W 2
+

∫ t

0

et−τ |∇W |2dxdτ + etk

∫
Ω

W 2
+,

then ∫
Ω

W 2
+|∇v|2 ≤ k‖W+‖2L∞(Ω)

∫ t

0

∫
Ω

et−τ |∇W |2dxdτ + etk

∫
Ω

W 2
+.

Therefore, inequality (46) becomes

1

2

d

dt

[∫
Ω

W 2
+ +

∫ t

0

∫
Ω

|∇W+|2
]

≤ k‖W+‖2L∞(Ω)

∫ t

0

∫
Ω

et−τ |∇W |2dxdτ + k(1 + et)

∫
Ω

W 2
+.

In view of (45), and thanks to Gronwalls Lemma, we obtain, for any T <∞
w ≤ w, for t < T

and taking limits when T →∞ we get

w ≤ w, for t <∞. (47)

In the same way, we prove that

w ≥ w, for t <∞ (48)
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for w satisfying {
w′ = −χwh(w)
w(0) = w0

(49)

and
w0 = min{ inf

x∈Ω
{w0}, w∗}.

We observe that, under assumptions (35), (36), the solution to the equation{
y′ = −χyh(y)
y(0) = y0

(50)

satisfies
y(t)→ w∗

for any y0 > 0 and the proof ends.

Notice that the boundedness of w does not guarantee the boundedness of u since
the uniform boundedness of v is not obtained. Nevertheless, by integration we
obtain

‖v‖L∞(Ω) ≤ c0(1 + t). (51)

Theorem 3.3. Under the assumption (32)-(33) and (12)-(15), there exists a unique
global solution (w, v) of (42), with

w, v in C
2+α,1+α

2
x,t (Ω∞). (52)

The proof reproduces the steps of Theorem 2.2 in [10] using Lemma 3.2 and (51)
instead of Theorem 2.1 in [10].

REFERENCES

[1] A. R. A. Anderson and M. A. I. Chaplain, Continuous and discrete mathematical models of

tumor-induced angiogenesis, Bull. Math. Biology, 60 (1998), 857–899.
[2] T. Black, Global existence and asymptotic stability in a competitive two-species chemotaxis

system with two signals, Discrete & Continuous Dynamical Systems-Series B, 22 (2017),

1253–1272.
[3] T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species

chemotaxis model, IMA J Appl Math., 81 (2016), 860–876.

[4] T. Bollenbach, K. Kruse, P. Pantazis, M. González-Gaitán and F. Jülicher, Morphogen
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