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cell populations includes non-local terms of integral type in the coefficients. By
introducing a comparison with solutions of an ODE’s system, we show that there

Keywords:

Frc% boundary problem exists a unique homogeneous steady state which is globally asymptotically stable
Stability for a range of parameters under the assumption of radially symmetric initial data.
Comparison method © 2014 Elsevier Inc. All rights reserved.

Asymptotic behavior

1. Introduction

The growth of cells colonies has been a focus of research since the first studies of cancer. With the
increasing number of experimental data have appeared a large hierarchy of mathematical models. In this
paper, we consider a simplified mathematical model in a free boundary domain. The system simplifies the
problem proposed in [9] based on a continuous distribution of cell population and modeled by hyperbolic
equations.

Systems of hyperbolic equations in that context have been used before by several authors (see for instance
Friedman [2,1], Friedman and Tao [3], Tao [8] and references therein).

We denote by “s” the density of a colony of cells in a bounded domain {2(¢) with moving boundary
“002(t)”. We assume that the cells die at constant death rate ks. The dead cells are removed at constant
rate kq as they decompose at rate k/, assumed constant. For technical reasons we take

4
kg > § (1.1)
The volume is composed by the living cells and death cells and it is exemplified as a porous medium with a

radial distribution in a spherical domain. The flow velocity in the interior of the colony is denoted by “v”
* Corresponding author.
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and the density of death cells by d. After renormalization we may assume
K, = kq

and the problem is described by the following system of equations

%+V‘(vs):k38—kds, 0<t<T, xzet),
od
a +V. (Ud) =kgs —kgd, 0<t<T, x€ Q(t) (1.2)

with regular initial data.
The growth factor depends of the total mass of living cells and it is defined by

1
he=1- / ‘.
|£2(2)]

Q2(t)

The coefficient represents the balance between the constant birth rate and the death rate caused by the
limited resources. We consider that the resources depend of total amount of population m J Ok and
have a constant distribution in the domain.

We assume that the density of cells into the colony is constant, i.e.,

s+d=1. (1.3)
Adding both equations we have that
Vv =kss —kqd. (1.4)
We take on radial symmetry and therefore the domain (2(¢) is as follows
2(t) = {z € R® so that |z| < R(t)}

where R(t) is the exterior boundary of the tumor. Velocity “v” of the cells at the boundary determines the
expansion of the free boundary, i.e.,

dR
- = v(R(t),1).

The aim of the present paper is to prove that:

Theorem 1.1. For kq > 4/3, there exists a constant steady state

ka — /K2 + 4kq

2 )

sf =1+
such that, for any positive and reqular initial data sg, the solution s of system (1.2) satisfies

HS—S*HLDO —0, ast— oo

and R(t) ~ Rg exp(((1 — s* + kq)s™ — kq)t).
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The proof is based on a comparison argument adapted to hyperbolic equations. Comparison arguments
have been widely used in parabolic systems, see for instance [4-7]. In the next section we construct a
coupled system of ODE’s to obtain a sub- and super-solutions of the hyperbolic equation (Lemma 2.4). The
asymptotic behavior of the sub- and super-solutions (Lemma 2.3) is the final step to prove the theorem.

2. Mathematical analysis

We introduce the spacial variable r € I := (0, 1) with formula as follows

Since

v 08
V'(US)—SV-U—i—v-VS—s(k:ss—kdd)+EE

and

(t) T
thanks to (1.3), the system (1.2)-(1.4) becomes
0s R wv)\0s 9
E + <—7"E + E) % = ksS — S (ks + k'd), (26)

9 <r22> = 12 ((ks + ka)s — ka), (2.7)

where k; is defined in (2.5). The system is completed with the initial data sy := s(r,0) and the boundary
condition obtained by integration in (2.7).
We consider the auxiliary system of ODE’s given by

—/
S

(1—8)—5*(1+ks—35), 0<t<T, (2.8)
s =5(1-3)—s*(1+kqg—s), 0<t<T, (2.9)

I
w0l

Il
1%

with positive initial data sg and 5q, respectively.
Lemma 2.1. Assuming that

0<s9g<39<1, (2.10)
the solution to (2.8)-(2.9) exists globally in time and satisfies

O0<s<s<l1.

Proof. Since on the right hand side of the equations the functions are regular, we have existence and
uniqueness of solutions in a maximal interval (0, 7},4,), where T, satisfies

Hm ¢+ |s(t)] + [3(¢)| = o0

t—=Thax
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and
t+|s(t)| +|5(t)| < oo, forany t < Tpaa-

Now, we take the first g > 0 such that either

itO)

or any combinations of the previous cases. We argue by contradiction and take for granted that (3) occurs.
Then §'(t9) = §'(to), we consider the ODE

' =u(l —u) —u?(1 + kg —u), t > to, u(to) = s(to) = 5(to),
which has a unique solution. Notice that s = 5§ = w is the solution to the system (2.8), (2.9) with initial
data s(tg) = 5(to) = u(tp). By uniqueness of solutions, 5 = s for any ¢ € (0, T4z ), which contradicts (2.10).
If 5(tp) = 1, then §'(tp) > 0 and we have that

0<1—§—k3d

which contradicts (1.1). If s(t9) = 0, by uniqueness of solutions we have that s = 0 for any ¢ € [0, Ty4z)
which contradicts (2.10). Finally, the solution is uniformly bounded and exists globally, i.e. T)qp = 00. O

Lemma 2.2. Let s* = 1+ (kg — (k3 + 4kq)2)/2, then assuming
s0 < 8" < o, (2.11)
it leads us into
s < 8§ <3,
where (s,3) satisfies (2.8)—(2.9), with initial data (s, 30)-
Proof. As in the previous lemma, we argue by contradiction. Assume there exists tg < oo such that

g(to) = S*,
s(t) < s* and 3(t) > s", t<ty. (2.12)

Notice that, by Lemma 2.1 we have that s(tg) < s(tg) = s*. Since s* satisfies
1—3*—3*(1+kd—s*) =0,
we obtain
§(to) =s"(s*—s) >0

which contradicts (2.12) and proves s(tg) > s*.
In the same way we prove s(tg) < s*. Notice that s* € (0,1) as a consequence of (1.1). O
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Lemma 2.3. Let us consider hypotheses (1.1), (2.10) and (2.11). Then, we have s > s*s¢/30 and
|s—s| =0, ast— oo.

Proof. We divide (2.8) by 5 and (2.9) by s to obtain

ilo
dar 8

1% | Wl

= —kq(5— )+ (5° — 5°) = ((534 ) — ka) (5 — ). (2.13)
By Lemma 2.1, it results in

kg — /K2 ¥ 4k kg — /KZ T Ak
S+ s5—hkg<l4s —kg=2+ -2 a2 4 a + 20

d — = —€p.

2 2

Notice that, by (1.1) we have ¢y > 0. We now follow the proof in [10], and thanks to (2.13)

d
— log

- < —€o(3 — 3). (2.14)

& | Wl

Thanks to Lemma 2.1 we have that 3 — s > 0 and therefore

d 5
log — < 0.
dt & s
After integration we obtain
log °< < log 20
S 50
which implies
S S
20
S S0
and
S
5< s
50
By Lemma 2.2, it results in
s > 550/50 > s¥s0/50. (2.15)

We now apply the Mean Value Theorem to (2.14) to obtain

d 5 5 5
7 10g < —€p(5—5) < —€g exp <log §> < —epé(t) <10g ;)

for £(t) € (s(t),5(t)). Thanks to (2.15) and Lemma 2.1 we have

VAl

dlo— —65*§—0 10E
dt g§ % 3 &5 )
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After integration we obtain

S —eps™20¢ 50
log — < e % 50" log —
S S0
and
S eps™ 20 S0
< exple ©° S0"log — ;.
S S0

Thanks to (2.15) we have that

|5—s|=s z—l < s* Z—l‘ < s* exp{e_eos*ziotlogz—Z} —1’ -0 ast— o0
and the proof ends. O
Lemma 2.4. Under assumption
0 < s0 < 50 < B0 < 1, (2.16)
the solutions to (2.8)—(2.9) and (2.6)—(2.7) satisfy
s<s<s, fort>D0. (2.17)

Proof. The proof of the lemma presents some technical differences with standard comparison arguments,
mainly because the integral factors. To solve such problem we introduce the following auxiliary function

s ifs<s
o(s):=4¢s ifse(s3)
5 ifs>3.

We replace s by ¢(s) in the integral terms of the system and once we prove the lemma, we may eliminate ¢.
We consider the following functions

Wl
Il
®
|
@l
195}
Il
®
|
1%

Notice that S satisfies the equation
08 R v\dS o
E + <—T’E + E) E = (ks — kd)S — S((ks + kd)S — kd)
—5((ks + kq)s — ks +1—s—5(1+ kg —5)). (2.18)
Moreover we have

—5((ks + ka)s —ks+1—s—3(1+kqg—3)) = —3((1 + ka)S + 3/r2 (p(s) —s) — 3s/r2¢(s) + §2>

< —5(14+kq—73)S.
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We introduce the function H. defined by

ifx>e€
fo<z<e
if z <O0.

H(x):=

S alg

Multiplying (2.18) by r2H.(S) and integrating over I, by taking limits as € — 0, we get

R
T I

- /7’2§+§(1 + kg — 3). (2.19)
I

The second term in the left side of (2.19) is treated in the following way

R oS — 10r%w
2__ - +__ 2 _
/T(TR R)ar 3/S+ /S+R8r
I

Thanks to (2.7) the last term in the previous equation is simplified to

— 1 0r%w —
_/ng+mW _ —/r25+((l<:5 + ka)s — ka) (2.20)
I I

5, - R _
& /T’QS+ < <—3E + C) /7"284_.
I I

By Gronwall’s Lemma we obtain that s < 5 as far as RR™! is bounded. In the same way we obtain s > s.

resulting in

To end the demonstration we claim that RR~! is bounded for all ¢ < co. By contradiction, if there exists
Tinae < 00 such that |RR‘1] = 0o then

v(LTmam) = lim /rz((ks + kd)s _ kd) _

t—=T ez
1

which contradicts the fact that s < 5 in (0, T},4,) and the testing is done. 0O

Proof of Theorem 1.1. As a consequence of Lemma 2.3 and Lemma 2.4 we have that
Hs—s*”mo -0 ast—

and R(t) ~ Ro exp(((1 — s* + kq)s* — kq)t) and it’s proved as right. 0O

3. Numerical simulations and discussion

We have analyzed a first order system of hyperbolic equations in a moving domain with non-local terms
depending on a parameter ky. The system describes a cell’s population dynamics related with other math-
ematical models in tumor growth existing in the literature. The results show how the population tends to
a homogeneous distribution of cells in the domain as time grows for kg > 4/3. A lower estimation of the
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Time =0 Time =0.5*10°
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Fig. 1. Density distribution for the solution s (—), the sub-solution s (A), super-solution 5 (V) and the steady state s™ (x) at t =0
(left) and t = 0.5 - 10% (right).

Time =1.5*10% Time =2*10°
0.47 0.32¢
Solution Yy V VvV vV V V V V V V Solution 4
v Supersolution v Supersolution
A Subsolution 0.3t A Subsolution
0.35% vV V. V. V. Vv Vv Vv VvV *  Steady State s|" ' * Steady State s’

0.28
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0 02 04 06 08 1 “o 02 04 06 08 1

Fig. 2. Density distribution for the solution s (=), the sub-solution s (A), super-solution s (V) and the steady state s* (%) at
t=1.5-10% (left) and t = 2 - 10® (right).

rate of convergence in L ({2(t)) is given by the rate of convergence of the solutions to the associated EDO’
system (2.8)-(2.9).

The following numerical simulations show the convergence of the solution for k; = 2 and how the sub-
and super-solutions reach the steady state (see Figs. 1 and 2). Notice that the minimum distance between
the maximum of the solution and the super-solution, i.e. [ — max,c ) s| is not monotone.

For the remaining cases, when k4 < 4/3, it is possible that the solutions do not stabilize towards homoge-
neous profiles and even non-constant equilibria may appear, but these require entirely different approaches
than pursued here where only asymptotic stability is studied.
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