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Abstract

We study the behavior of two biological populations “u” and “v” attracted by the same chemical sub-
stance whose behavior is described in terms of second order parabolic equations. The model considers 
a logistic growth of the species and the interactions between them are relegated to the chemoattractant pro-
duction. The system is completed with a third equation modeling the evolution of chemical. We assume that 
the chemical “w” is a non-diffusive substance and satisfies an ODE, more precisely,






ut = !u − ∇ ·
(
uχ1(w)∇w

)
+ µ1u(1 − u), x ∈ Ω, t > 0,

vt = !v − ∇ ·
(
vχ2(w)∇w

)
+ µ2v(1 − v), x ∈ Ω, t > 0,

wt = h(u, v,w), x ∈ Ω, t > 0,

under appropriate boundary and initial conditions in an n-dimensional open and bounded domain Ω . We 
consider the cases of positive chemo-sensitivities, not necessarily constant elements. The chemical produc-
tion function h increases as the concentration of the species “u” and “v” increases. We first study the global 
existence and uniform boundedness of the solutions by using an iterative approach. The asymptotic stability 
of the homogeneous steady state is a consequence of the growth of h, χi and the size of µi . Finally, some 
examples of the theoretical results are presented for particular functions h and χi .
 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Chemotaxis is the ability of living organisms to orientate their movement towards or away 
from a chemical substance. The term was introduced to describe cell migration observed during 
the early days of the development of microscopy in the nineteenth century. As the technology 
advanced, the action has emerged as a relevant process in many biological situations, as immune 
system response, embryo development, tumor growth, bacteria cluster formation, etc. One of 
the most studied biological systems where chemotaxis occurs is the slime mold aggregation, 
where Dictyostelium Discoideum aggregates to concentrate the mass in a small region. In the 
last 40 years, after the pioneering works of Keller–Segel, chemotaxis has been described by using 
nonlinear systems of PDEs with second order terms modeling the aggregation of the organisms. 
The problem contains a set of parameters giving different weights to those terms which describe 
other biological processes involved as aggregation, diffusion, degradation, production, etc.

Chemotactic models appear not only in the mentioned biological processes at microscopic 
scale, but also population dynamics at macroscopic scale in the context of life sciences, gravita-
tional collapse in astrophysics, material sciences, etc.

From a theoretical point of view, the problem presents important mathematical challenges, 
some of them already studied for systems of one species with one chemoattractant but still un-
clear for two species or multiple stimuli models. Some of these challenges are to describe the 
mechanism which drives the system to finite time blow-up or to global boundedness and to ob-
tain the constrains of the parameters, the threshold values which decide the behavior and the 
stability of the system.

In that direction many authors have studied the qualitative properties of these mathematical 
models depending on the relations between such parameters and the initial data. The first math-
ematical works deal with the initial mass threshold in a two dimensional domain to obtain finite 
time blow-up. The fully Parabolic problem, i.e., where the species and the stimuli behavior are 
described by two parabolic equations and the Parabolic–Elliptic system where the stimuli sat-
isfy a second order elliptic equation, have been studied in a deep way in different works, see 
for instance Horstmann [11] and references therein for more details. Subsequently, a Parabolic-
ODE model has been derived by Stevens [17] (see also Levine and Sleeman [14] and Othmer 
and Stevens [16]) to modelize the aggregation of myxobacteria by using a discrete model and 
probabilities to describe the oriented movement of the organisms. The stability of the Parabolic-
ODE problem has been studied in several works, in Friedman and Tello [10] the local stability is 
obtained under assumptions

∂h

∂u
> 0 and uχ

∂h

∂u
+ ∂h

∂w
< 0.

Motivated by biological experiments, see Lauffenburger [13], multi-species chemotaxis systems 
become a rich mathematical problem, already proposed in the 1980s by Alt [1] and subse-
quently studied in Fasano, Mancini and Primicerio [9], Wolansky [21] and Horstmann [12], 
among others. More recently, systems of two species with one chemoattractant have been studied 
by different research groups, the finite-time blow-up in bounded domains for the Parabolic–
Parabolic–Elliptic issue has been analyzed by Espejo, Stevens and Velázquez [7] and [8] for 
simultaneous and non-simultaneous blow-up. See also the results in Biler, Espejo and Guerra [3], 
Biler and Guerra [4] for bounded domains and Conca and Espejo [5,6] for the two-dimensional 
case in the whole space. The Parabolic–Parabolic–Elliptic cases with competitive terms, i.e., 
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when there exists an explicit interaction between the species, have also been studied in the last 
years by different authors. In Tello and Winkler [20] the Parabolic–Parabolic–Elliptic problem is 
analyzed under “weak” competitive assumptions, which drive it to positive homogeneous steady 
states. A more general case is considered in Negreanu and Tello [18] where both species persist 
in time. “Strong competition assumptions”, i.e., when the competitive parameters between the 
species are “large”, drive the system to the extinction of the weaker species, see Stinner, Tello 
and Winkler [22] for details. Parabolic–Parabolic–Elliptic models with external application of 
chemoattractant have also been considered in Negreanu and Tello [19] where the stability of the 
solutions is described for a large range of parameters.

In the present work we analyze the Parabolic–Parabolic-ODE system where the interaction of 
the species is relegated to the chemoattractant production, i.e., there is no competition/coopera-
tion or symbiosis between the species. The chemotactic sensitivities of the species, χ1 and χ2, 
are not necessary constant, but they only depend on the chemoattractant. Denoting the population 
densities by u(x, t) and v(x, t) and the concentration of the chemoattractant by w(x, t), classical 
models lead to






ut = !u − ∇ ·
(
uχ1(w)∇w

)
+ µ1u(1 − u), x ∈ Ω, t > 0,

vt = !v − ∇ ·
(
vχ2(w)∇w

)
+ µ2v(1 − v), x ∈ Ω, t > 0,

wt = h(u, v,w), x ∈ Ω, t > 0,

(1.1)

in a bounded and regular domain Ω ⊂Rn, for n ≥ 1, with Neumann boundary conditions

∇u · ν − uχ1(w)∇w · ν = ∇v · ν − vχ2(w)∇w · ν = 0, x ∈ ∂Ω, t > 0, (1.2)

and bounded initial data

u(x,0) = u0(x), v(x,0) = v0(x), w(0, x) = w(x), x ∈ Ω, (1.3)

in (W 1,s(Ω))3, with s ∈ [max{4, N}, ∞), and positive parameters µ1 and µ2.
Notice that h(u, v, w) represents the balance between the production of the chemical sub-

stance by the living organisms and its natural degradation. Depending on the process, the chemo-
tactic functions χ1 and χ2 can take different forms, the simplest case, where χi are constants is 
treated in several examples in the present work. We assume along this work that χi (for i = 1, 2) 
and h are regular and the chemoattractant sensitivities are positive, i.e.

χi , h ∈ W 1,∞
loc

(
R2

+ ×R
)
, χi > 0. (1.4)

We consider the case where the production of the chemical increases as the concentration of the 
species increases, i.e.,

∂h

∂u
≥ εu > 0 and

∂h

∂v
≥ εv > 0. (1.5)

Taking into account the natural degradation of w, we set

∂h

∂w
< 0. (1.6)
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By Implicit Function Theorem and assumption (1.6) we deduce the existence of a unique con-
stant w̃ satisfying

h(1,1, w̃) = 0. (1.7)

Consequently (1, 1, w̃) is a constant stationary solution of the system.
In Sections 2 and 3 we consider the Parabolic–Parabolic-ODE problem, where the chemosen-

sitivity functions satisfy

−h(0,0,w) ≤ ki

χi (w)
for some ki > 0, (1.8)

0 < k0i ≤ χi (w)e
∫ w
w χi (s)ds for w > w, (1.9)

for some positive constants k0i , with i = 1, 2. We assume that there exist positive constants w
and w such that

w < w̃ < w,

the chemical production h fulfills

h(u, v,w) ≥ 0, h(u, v,w) ≤ 0, for 0 ≤ u ≤ u, 0 ≤ v ≤ v, (1.10)

where

u := f1(w)max
{
(k1 + µ1)(εuk01 + µ1)

−1,‖u0‖L∞(Ω)

}
, (1.11)

v := f2(w)max
{
(k2 + µ2)(εvk02 + µ2)

−1,‖v0‖L∞(Ω)

}
, (1.12)

for fi defined by

fi(w) = e
∫ w
w χi (s)ds

, i = 1,2 (1.13)

and the initial data u0 +≡ 0, v0 +≡ 0 and w0 satisfy

0 ≤ u0 ∈ L∞(Ω), 0 ≤ v0 ∈ L∞(Ω), w ≤ w0 ≤ w. (1.14)

Section 2 focuses on the global existence of solutions by using an iterative method to prove 
uniform boundedness of the solutions in L∞(Ω). Section 3 is devoted to the stability of the 
homogeneous steady states. Using energy estimates, we get that the steady state (1, 1, w̃) is 
asymptotically stable and any solution with initial data satisfying (1.14) converges to the constant 
steady state (1, 1, w̃). The result is obtained under the following constrain:

There exists α ∈ (0,1) such that

αhw + uhuχ1 + vhvχ2 < 0 and 2
√

1 − αhw + uhvχ1 + vhuχ2 < 0 (1.15)
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for any (u, v, w) satisfying

0 ≤ u ≤ u, 0 ≤ v ≤ v, w ≤ w ≤ w.

Notice that (1.15) is also satisfied by the initial data, since u0 ≤ u, v0 ≤ v and w0 satisfies (1.14). 
We also prove that replacing (1.15) by

2uχ1
∂h

∂u
+ ∂h

∂w
< 0, 2vχ2

∂h

∂v
+ ∂h

∂w
< 0, if 0 ≤ u ≤ u, 0 ≤ v ≤ v, w ≤ w ≤ w, (1.16)

∣∣∣∣
uhuχ1 + hw

h2
u

− vhvχ2 + hw

h2
v

∣∣∣∣ ≤
√

hw(2uhuχ1 + hw)

h2
u

+
√

hw(2vhvχ2 + hw)

h2
v

, (1.17)

the result of asymptotic behavior remains valid.
All these hypotheses indicate us how to choose the initial data (u0, v0, w0) of the problem to 

obtain the desired results: global existence, global boundedness and asymptotic stability, i.e., the 
last ones are required in the study of the stability of the homogeneous steady states.

From a biological point of view, these restrictions show a balance between degradation and 
production, i.e., the degradation is, in some sense, “stronger” than the production of the chemical 
and it is a sufficient condition for the global boundedness.

Remark 1.1.

1. It should be emphasized that for the case hu = hv , expression (1.17) does not impose any 
further restrictions on the choice of the initial data (u0, v0), i.e., it could be simplified as 
follows

∣∣∣∣
uhuχ1 + hw

h2
u

− vhvχ2 + hw

h2
v

∣∣∣∣ =
∣∣∣∣

1
2h2

uhw

[
hw(hw + 2uhuχ1) − hw(hw + 2vhuχ2)

]∣∣∣∣

≤ hw(hw + 2uhuχ1)

2h2
u|hw| + hw(hw + 2vhuχ2)

2h2
u|hw| .

By subsequent, for the case hu = hv > 0, (1.17) is reduced to ensure that

hw(hw + 2uhuχ1) + hw(hw + 2vhuχ2)

≤ 2|hw|
√

hw(2uhuχ1 + hw) + 2|hw|
√

hw(2vhuχ2 + hw).

The last inequality, taking term by term, i.e.,

(√
hw(hw + 2uhuχ1)

)2 ≤ 2|hw|
√

hw(2uhuχ1 + hw)

and

(√
hw(hw + 2vhuχ2)

)2 ≤ 2|hw|
√

hw(2uhuχ1 + hw)

is immediate, recalling (1.16), (1.5) and (1.6).
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2. The same remark can be made about (1.15) in the particular case hu = hv , i.e.,

uhuχ1 + vhuχ2 < min{α,2
√

1 − α}hw.

Taking α = 2(
√

2 − 1), the initial data of the problem are selected under the unique stan-
dard

hu max
x∈Ω

(
u0(x)χ1 + v0(x)χ2

)
< −2(

√
2 − 1)hw. (1.18)

These observations are very important at the time of studying the asymptotic behavior for 
stationary solutions of system (1.1) because it facilitates the choice of the initial data and the 
necessary parameters for its resolution.

In Section 4, we shall see, in a practical way, the direct implementation of these simplifications 
with several examples to illustrate the theoretical results. All the examples are chosen among 
those appear in the literature. Throughout the article we use the following notations

ΩT = Ω × (0, T ), Ω∞ = Ω × (0,∞).

2. Global existence of solutions

The main aim of this section is to demonstrate the global existence of solutions which is 
described by the following theorem.

Theorem 2.1. Under assumptions (1.4)–(1.6) and (1.8)–(1.10) there exists a unique solution

(u, v,w) ∈ C
(
[0,∞),

(
W 1,s(Ω)

)3) ∩ C1((0,∞),
((

W 1,s(Ω)
)′)2 × W 1,s(Ω)

)

to the problem (1.1)–(1.3) for any initial data (u0, v0, w0) ∈ (W 1,s(Ω))3, with s ∈ [max{4, N},
∞) satisfying (1.14). Moreover the solution is uniformly bounded, i.e.

‖u‖L∞(Ω) + ‖v‖L∞(Ω) + ‖w‖L∞(Ω) ≤ C < ∞.

The proof is split into several steps. The following lemma guarantees the local existence of 
the solution to the problem.

Lemma 2.2. Under assumptions of Theorem 2.1, there exist a Tmax > 0 and a unique maximal 
positive solution to (1.1)–(1.3) satisfying

(u, v,w) ∈ C
(
[0, Tmax),

(
W 1,s(Ω)

)3) ∩ C1((0, Tmax),
((

W 1,s(Ω)
)′)2 × W 1,s(Ω)

)

and

lim
t→Tmax

∥∥u(t)
∥∥

W 1,s (Ω)
+

∥∥v(t)
∥∥

W 1,s (Ω)
+

∥∥w(t)
∥∥

W 1,s (Ω)
+ t = ∞.
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Proof. We denote by b1 the following vector

b1 =
(
uχ1(w), vχ2(w)

)
.

For φ = (u, v), defining

A1φ = (−!u,−!v); A2(φ,w)w =
(
div

(
uχ1(w)∇w

)
,div

(
vχ2(w)∇w

))

and Tmax is maximal in the sense that

B1φ = ∂φ

∂n
, B2(φ,w)w = b1

∂w

∂n
,

system (1.1)–(1.2) can be written as follows






φt +A1φ +A2(φ,w)w = g(φ,w) in Ω × (0, Tmax),

wt = h(φ,w) in Ω × (0, Tmax),

B1φ +B2(φ,w)w = 0 on ∂Ω × (0, Tmax),

where g(φ, w) = (µ1u(1 − u), µ2v(1 − v)).
Applying Theorem 6.4 of [2] we get the existence of a maximal weak solution. !

Lemma 2.3. Under assumptions of Theorem 2.1, we have that

u ≥ 0, v ≥ 0, w ≥ w, for t ∈ (0, Tmax).

Proof. In order to obtain the non-negativity of u and v, we work with the change of variables ũ
and ṽ given by

u = f1(w)ũ, v = f2(w)ṽ, (2.19)

where fi are defined in (1.13) by

fi(w) = e
∫ w
w χi (s)ds

, i = 1,2.

Notice that

ut = f ′
1(w)wt ũ + f1(w)ũt , vt = f ′

2(w)wt ṽ + f2(w)ṽt

∇u = f ′
1(w)∇wũ + f1(w)∇ũ, ∇v = f ′

2(w)∇wṽ + f2(w)∇ṽ.

Taking into account the expression of fi in (1.13), we have

f ′
i (w) = fi(w)χi (w), i = 1,2

and system (1.1)–(1.3) becomes
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ũt = !ũ + χ1(w)∇w∇ũ + g1(ũ, ṽ,w), x ∈ Ω, t > 0,

ṽt = !ṽ + χ2(w)∇w∇ṽ + g2(ũ, ṽ,w), x ∈ Ω, t > 0,

wt = h
(
f1(w)ũ, f2(w)ṽ,w

)
, x ∈ Ω, t > 0,

(2.20)

with Neumann boundary conditions

∂ũ

∂n
= ∂ ṽ

∂n
= 0 (2.21)

and initial data

ũ(x,0) := ũ0(x) = u0(x)

f1(w0(x))
, ṽ(x,0) := ṽ0(x) = v0(x)

f2(w0(x))
,

w(0, x) = w0(x), (2.22)

where

g1(ũ, ṽ,w) = −ũχ1(w)h
(
f1(w)ũ, f2(w)ṽ,w

)
+ µ1ũ

(
1 − f1(w)ũ

)

g2(ũ, ṽ,w) = −ṽχ2(w)h
(
f1(w)ũ, f2(w)ṽ,w

)
+ µ2ṽ

(
1 − f2(w)ṽ

)
.

Standard results of Maximum Principle for parabolic equations and regularity of χi and h prove 
the positivity of u and v since g1(0, ṽ, w) = g2(ũ, 0, w) = 0. Thanks to (1.6), (1.10) and by the 
Maximum Principle applied to the ODE wt = h(u, v, w), we obtain

w < w,

which ends the proof. !

Lemma 2.4. The solution to (1.1)–(1.3) satisfies

∫

Ω

udx ≤ max
{
|Ω|,

∫

Ω

u0dx

}
and

∫

Ω

vdx ≤ max
{
|Ω|,

∫

Ω

v0dx

}
.

Proof. Integrating (1.1) over Ω and using (1.2), we have that

d

dt

∫

Ω

udx = µ1

(∫

Ω

udx −
∫

Ω

u2dx

)
.

Thanks to Cauchy–Schwarz inequality

1
|Ω|

∣∣∣∣

∫

Ω

udx

∣∣∣∣
2

≤
∫

Ω

u2dx,
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we obtain

d

dt

∫

Ω

udx ≤ µ1

(∫

Ω

udx − 1
|Ω|

∣∣∣∣

∫

Ω

udx

∣∣∣∣
2)

. (2.23)

Maximum Principle gives us the first inequality. In the same way, we proof the inequality 
for v. !

Lemma 2.5. Let us consider p ≥ 1 and fi (for i = 1, 2) as in (1.13). Under hypothe-
ses (1.8)–(1.12), the following estimates hold:

1
p − 1

d

dt

∫

Ω

upf
1−p
1 dx ≤ −(εuk01 + µ1)

∫

Ω

up+1f
−p
1 dx + (k1 + µ1)

∫

Ω

upf
1−p
1 dx

and

1
p − 1

d

dt

∫

Ω

vpf
1−p
2 dx ≤ −(εvk02 + µ2)

∫

Ω

vp+1f
−p
2 dx + (k2 + µ2)

∫

Ω

vpf
1−p
2 dx,

where ki , k0i (for i = 1, 2), εu and εv are given in (1.8), (1.9) and (1.5), respectively.

Proof. Recall that

d

dw
fi = χi (w)fi, for i = 1,2,

then, for p ≥ 1

d

dt

∫

Ω

upf
1−p
1 dx = p

∫

Ω

up−1utf
1−p
1 dx +

∫

Ω

up
[
f

1−p
1

]′
h(u, v,w)dx

= p

∫

Ω

up−1utf
1−p
1 dx + (1 − p)

∫

Ω

upf
1−p
1 χ1(w)h(u, v,w)dx

= p

∫

Ω

up−1(!u − ∇ ·
(
uχ1(w)∇w

))
f

1−p
1 dx + pµ1

∫

Ω

upf
1−p
1 (1 − u)dx

+ (1 − p)

∫

Ω

upχ1(w)f
1−p
1 h(u, v,w)dx. (2.24)

Since

p

∫

Ω

up−1f
1−p
1

(
!u − ∇ ·

(
uχ1(w)∇w

))
dx

= −p

∫

Ω

∇
(
up−1f

1−p
1

)(
∇u − uχ1(w)∇w

)
dx
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= −p(p − 1)

∫

Ω

up−2f
1−p
1

(
∇u − uχ1(w)∇w

)2
dx

= −p(p − 1)

∫

Ω

up−2f
1−p
1

(
e
∫ w

0 χ1(s)ds∇
(
ue−

∫ w
0 χ1(s)ds

))2
dx

we have

p

∫

Ω

up−1f
1−p
1

(
!u − ∇ ·

(
uχ1(w)∇w

))
dx ≤ 0. (2.25)

Notice that we can rewrite

h(u, v,w) = h(u, v,w) − h(0, v,w) + h(0, v,w) − h(0,0,w) + h(0,0,w),

by Mean Value Theorem and assumption (1.4) we get

h(u, v,w) = ∂h

∂u

∣∣∣∣
(ξ1,v,w)

u + ∂h

∂v

∣∣∣∣
(0,ξ2,w)

v + h(0,0,w)

where ξ1 ∈ (0, u) and ξ2 ∈ (0, v). In view of (1.5), (1.6) and (1.8), we have that

−h(u, v,w) ≤ −εuu − εvv − h(0,0,w) ≤ −εuu + k1

χ1(w)

for k1 as in (1.8). Then,

−
∫

Ω

upχ1(w)f
1−p
1 h(u, v,w)dx ≤ −εu

∫

Ω

up+1χ1(w)f
1−p
1 dx + k1

∫

Ω

upf
1−p
1 dx

≤ −εuk01

∫

Ω

up+1f
−p
1 dx + k1

∫

Ω

upf
1−p
1 dx. (2.26)

We also consider the term

∫

Ω

upf
1−p
1 (1 − u)dx ≤

∫

Ω

upf
1−p
1 dx −

∫

Ω

up+1f
−p
1 dx. (2.27)

Thanks to (2.25), (2.26) and (2.27), (2.24) becomes

1
p − 1

d

dt

∫

Ω

upf
1−p
1 dx ≤ −(εuk01 + µ1)

∫

Ω

up+1f
−p
1 dx + (k1 + µ1)

∫

Ω

upf
1−p
1 dx.

In the same fashion we obtain
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1
p − 1

d

dt

∫

Ω

vpf
1−p
2 dx ≤ −(εvk02 + µ2)

∫

Ω

vp+1f
−p
2 dx + (k2 + µ2)

∫

Ω

vpf
1−p
2 dx

and the proof is done. !

Lemma 2.6. Under the same assumptions as in Lemma 2.5, the solutions u, v and w of (1.1) are 
uniformly bounded in time by

‖u‖L∞(Ω) ≤ f1(w)max
{
(k1 + µ1)(εuk01 + µ1)

−1,‖u0‖L∞(Ω)

}
,

‖v‖L∞(Ω) ≤ f2(w)max
{
(k2 + µ2)(εvk02 + µ2)

−1,‖v0‖L∞(Ω)

}
.

Proof. We denote by

Xp =
∫

Ω

upf
1−p
1 dx.

Notice that, for any s > 0

∫

Ω

upf
1−p
1 dx ≤

∫

f1≤us(εuk01+µ1)

upf
1−p
1 dx +

∫

f1≥us(εuk01+µ1)

upf
1−p
1 dx

≤ s(εuk01 + µ1)

∫

f1≤us(εuk01+µ1)

up+1f
−p
1 dx

+ s1−p(εuk01 + µ1)
1−p

∫

f1≥us(εuk01+µ1)

udx,

i.e.,

∫

Ω

upf
1−p
1 dx ≤ s(εuk01 + µ1)

∫

Ω

up+1f
−p
1 dx + s1−p(εuk01 + µ1)

1−p

∫

Ω

udx,

which implies

−(εuk01 + µ1)

∫

Ω

up+1f
−p
1 dx ≤ −1

s

∫

Ω

upf
1−p
1 dx + s−p(εuk01 + µ1)

1−p

∫

Ω

udx. (2.28)

Thanks to (2.28) and Lemma 2.5, we have that

1
p − 1

d

dt
Xp ≤

(
k1 + µ1 − 1

s

)
Xp + s−p(εuk01 + µ1)

1−p

∫

Ω

udx. (2.29)

By Maximum Principle, taking s−1 > (k1 + µ1), we obtain
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(
1
s

− k1 − µ1

)
Xp ≤ max

{
s−p(εuk01 + µ1)

1−p

∫

Ω

udx,X
1
p
p (0)

}
,

and

lim
p→∞X

1
p
p ≤ max

{
s−1(εuk01 + µ1)

−1,X
1
p
p (0)

}
.

In view of Lemma 2.3 and taking limits as s−1 → (k1 + µ1), it results

‖u‖L∞(Ω) ≤ f1(w)max
{
(k1 + µ1)(εuk01 + µ1)

−1,‖u0‖L∞(Ω)

}
.

In the same way we get

‖v‖L∞(Ω) ≤ f2(w)max
{
(k2 + µ2)(εvk02 + µ2)

−1,‖v0‖L∞(Ω)

}

which ends the proof. !

3. Asymptotic behavior

The main result of the paper is the following asymptotic behavior for the stationary solutions 
of system (1.1)–(1.3).

Theorem 3.1. Under assumptions of Theorem 2.1, and either (1.15) or (1.16), (1.17), the unique 
global solution (u, v, w) of system (1.1) has the following asymptotic behavior:

∫

Ω

|u − 1|2dx → 0,

∫

Ω

|v − 1|2dx → 0,

∫

Ω

|w − w̃|2dx → 0 as t → ∞, (3.30)

where w̃ is given by (1.7).

The proof of the theorem is based on an energy estimate, for readers convenience we have 
split the proof into several lemmata.

Lemma 3.2. Let (u, v, w) be the solution to (1.1)–(1.3), then, under assumptions of Theorem 3.1, 
the following inequality holds

∫

Ω

|∇w|2dx +
∫ ∫

Ω∞

(
|∇u|2 + |∇u|2

)
dxdt +

∫ ∫

Ω∞

|∇w|2dxdt

+
∫ ∫

Ω∞

[
µ1u(u − 1)2 + µ2v(v − 1)2]dxdt ≤ C.

Proof. Multiplying by u − 1 and by v − 1 the first two equations in (1.1) and integrating over 
ΩT := Ω × (0, T ), we have
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1
2

∫

Ω

(u − 1)2
∣∣∣∣
T

0
dx +

∫ ∫

ΩT

|∇u|2dxdt

=
∫ ∫

ΩT

uχ1(w)∇u · ∇wdxdt − µ1

∫ ∫

ΩT

u(u − 1)2dxdt, (3.31)

1
2

∫

Ω

(v − 1)2
∣∣∣∣
T

0
dx +

∫ ∫

ΩT

|∇v|2dxdt

=
∫ ∫

ΩT

vχ2(w)∇v · ∇wdxdt − µ2

∫ ∫

ΩT

v(v − 1)2dxdt. (3.32)

For the variable w, by (1.1), we compute

∇wt = hu∇u + hv∇v + hw∇w.

Multiplying the last equation by λ∇w, where λ = λ(u, v, w) > 0 takes arbitrary positive values, 
we integrate over ΩT to obtain

1
2

∫

Ω

λ|∇w|2dx

∣∣∣∣
T

0
=

∫ ∫

ΩT

λhw|∇w|2dxdt

+
∫ ∫

ΩT

λhu∇u · ∇wdxdt +
∫ ∫

ΩT

λhv∇v · ∇wdxdt. (3.33)

Adding (3.31), (3.32) to (3.33) we find that

1
2

∫

Ω

λ
∣∣∇w(x,T )

∣∣2
dx +

∫ ∫

ΩT

(
|∇u|2 + |∇v|2

)
dxdt +

∫ ∫

ΩT

(−λhw)|∇w|2dxdt

≤
∫ ∫

ΩT

(
uχ1(w) + λhu

)
∇u · ∇wdxdt +

∫ ∫

ΩT

(
vχ2(w) + λhv

)
∇v · ∇wdxdt

+ O(1), (3.34)

where |O(1)| ≤ C, C independent of T . As a consequence of Lemma 2.6, we know that

1
2

∣∣∣∣

∫

Ω

(u − 1)2dx

∣∣∣∣
T

0

∣∣∣∣ ≤ k,
1
2

∣∣∣∣

∫

Ω

(v − 1)2dx

∣∣∣∣
T

0

∣∣∣∣ ≤ k

and by Lemma 2.3, we have that u(u − 1)2 ≥ 0. Applying Schwarz’s inequality to the right hand 
side integral terms in Eq. (3.34) we get the following bounds
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∫ ∫

ΩT

(
uχ1(w) + λhu

)
∇u · ∇wdxdt

≤ (1 − δ)

∫ ∫

ΩT

|∇u|2dxdt + 1
4(1 − δ)

∫ ∫

ΩT

(
uχ1(w) + λhu

)2|∇w|2dxdt (3.35)

and
∫ ∫

ΩT

(
vχ2(w) + λhv

)
∇v · ∇wdxdt

≤ (1 − δ)

∫ ∫

ΩT

|∇v|2dxdt + 1
4(1 − δ)

∫ ∫

ΩT

(
vχ2(w) + λhv

)2|∇w|2dxdt (3.36)

for 0 < δ < 1, small enough. If we impose that there exists λ > 0 verifying

(
uχ1(w) + λhu

)2 +
(
vχ2(w) + λhv

)2
< 4(−λhw) (3.37)

uniformly for (u, v, w) then, substituting (3.35)–(3.36) into (3.34) and thanks to (3.37) we deduce

∫

Ω

|∇w|2dx +
∫ ∫

Ω∞

(
|∇u|2 + |∇u|2

)
dxdt

+
∫ ∫

Ω∞

|∇w|2dxdt +
∫ ∫

Ω∞

µ1u(u − 1)2dxdt +
∫ ∫

Ω∞

µ2v(v − 1)2dxdt ≤ C. (3.38)

Let us consider the quadratic equation in λ

(
λhu + uχ1(w)

)2 +
(
λhv + vχ2(w)

)2 + 4λhw = 0.

The discriminant of the above equation is positive, i.e.,

! =
[(

2uhuχ1(w) + 2vhvχ2(w) + 4hw

)2 − 4
(
h2

u + h2
v

)(
u2χ2

1 (w) + v2χ2
2 (w)

)]
> 0

if (1.15) is satisfied and, in this case, the both roots

λ1,2(u, v,w) = 1
2(h2

u + h2
v)

{(
−2uhuχ1(w) − 2vhvχ2(w) − 4hw

)

±
[(

2uhuχ1(w) + 2vhvχ2(w) + 4hw

)2

− 4
(
h2

u + h2
v

)(
u2χ2

1 (w) + v2χ2
2 (w)

)] 1
2
}

(3.39)

are positive. Hence (3.37) is verified by choosing any λ ∈ (λ2, λ1) which ends the proof of the 
lemma. !
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Lemma 3.3. For every (u, v, w) verifying the system (1.1)–(1.3), we have that

1
|Ω|

∫

Ω

udx → 1,
1

|Ω|

∫

Ω

vdx → 1.

Proof. We introduce the notation

u∗ = 1
|Ω|

∫

Ω

udx

and integrate the first equation in (1.1) over Ω to obtain

d

dt
u∗ = µ1

(
u∗ −

∣∣u∗∣∣2 − 1
|Ω|

∫

Ω

∣∣u − u∗∣∣2
dx

)
. (3.40)

We define b(t) := (1/|Ω|) 
∫
Ω |u − u∗|2 which, by Poincaré’s inequality, satisfies

∞∫

0

b(t)dt = 1
|Ω|

∫ ∫

Ω∞

∣∣u − u∗∣∣2
dxdt ≤ C

∫ ∫

Ω∞

|∇u|2dxdt = C0 < ∞.

We multiply (3.40) by (u∗ − 1) to obtain

d

dt

(
u∗ − 1

)2 = µ1

(
u∗ −

∣∣u∗∣∣2 − 1
|Ω|

∫

Ω

∣∣u − u∗∣∣2
dx

)(
u∗ − 1

)
.

Thanks to Lemma 2.4, we have that

d

dt

(
u∗ − 1

)2 + µ1u
∗(u∗ − 1

)2 = −µ1b(t)
(
u∗ − 1

)
≤ c0b(t)

and after integration

∞∫

0

u∗(u∗ − 1
)2

dt ≤ c < ∞. (3.41)

We denote by k(t)

k(t) := u∗(u∗ − 1
)2 ≥ 0.

Notice that, by Lemma 2.4,

∣∣k′∣∣ =
∣∣u∗

t

(
3
(
u∗)2 − 2u∗ + 1

)∣∣ =
∣∣∣∣

∫

Ω

u(1 − u)dx

∣∣∣∣
∣∣3

(
u∗)2 − 2u∗ + 1

∣∣ ≤ c1 < ∞.
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By Lemma 5.1 (i) of [10] and thanks to (3.41), we conclude that

lim
t→∞u∗(u∗ − 1

)2 = 0. (3.42)

Hence, either limt→∞ u∗ = 1 or limt→∞ u∗ = 0. It suffices to show that the latter is impossible 
by obtaining a bound for u∗ from below. Thanks to (3.40) we have that

d

dt
u∗ ≤ µ1

(
u∗ −

∣∣u∗∣∣2)

and after integration

u∗ ≤ u∗(0)

u∗(0) + e−µ1t (1 − u∗(0))
= u∗(0)eµ1t

u∗(0)eµ1t + 1 − u∗(0)
. (3.43)

We consider t ≤ T , where T is defined as the first t > 0 such that u∗(T ) = exp(−µ1
∫ ∞

0 b(t)dt)×
min{1, u∗(0)}/2, if minu∗ ≤ e−µ1

∫ ∞
0 b(t)dt min{1, u∗(0)}/2 and T = ∞ otherwise.

For any t ≤ T , we get

d

dt
u∗ = µ1

(
u∗ −

(
u∗)2 − 1

|Ω|

∫

Ω

∣∣u − u∗∣∣2
dx

)

≥ µ1

(
u∗ −

(
u∗)2 − C

∫

Ω

|∇u|2dx

)

≥ µ1

(
u∗ −

(
u∗)2 − C̃u∗

∫

Ω

|∇u|2dx

)

= µ1u
∗
(

1 − u∗ − C̃

∫

Ω

|∇u|2dx

)

for

C̃ = C

mint∈[0,T ]{u∗} .

After integration,

u∗ ≥ u∗(0)eµ1(t−
∫ t

0 u∗(τ )dτ−
∫ t

0 b(τ )dτ )

since

t∫

0

b(τ )dτ =
t∫

0

∫

Ω

|∇u|2dxdτ ≤
∞∫

0

∫

Ω

|∇u|2dxdτ ≤ C0
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and by (3.43) we know that

t∫

0

u∗(τ )dτ ≤
t∫

0

u∗(0)eµ1τ

u∗(0)eµ1τ + 1 − u∗(0)
dτ = 1

µ1
ln

(
u∗(0)eµ1t + 1 − u∗(0)

)
,

we infer

u∗ ≥ e−µ1
∫ t

0 b(τ )dτu∗(0)
(
u∗(0)eµ1t + 1 − u∗(0)

)−1
eµ1t

≥ e−µ1
∫ ∞

0 b(t)dt min
{
1, u∗(0)

}
(3.44)

for t < T . Inequality (3.44) proves that T = ∞. Thanks to (3.42) and (3.44), we obtain

lim
t→∞

∣∣u∗ − 1
∣∣ = 0.

In the same way

lim
t→∞

∣∣v∗ − 1
∣∣ = 0

and the proof ends. !

Lemma 3.4. The following holds

∫

Ω

∣∣u − u∗∣∣2
dx +

∫

Ω

∣∣v − v∗∣∣2
dx → 0 as t → ∞.

Proof. First we prove that

∫

Ω

∣∣u − u∗∣∣2
dx → 0 as t → ∞, (3.45)

and consider the function k(t) ≥ 0

k(t) :=
∫

Ω

(
u(x, t) − u∗(t)

)2
dx.

By Poincaré’s inequality and Lemma 3.2, we find the following upper bound

∞∫

0

k(t)dt ≤
∞∫

0

∫

Ω

∣∣∇u(x, t)
∣∣2

dxdt ≤ C < ∞.

Substituting 0, T by t , t + s in (3.31), we get
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∣∣∣∣

∫

Ω

[(
u(x, t + s) − 1

)2 −
(
u(x, t) − 1

)2]
dx

∣∣∣∣ ≤ C

t+s∫

t

∫

Ω

(∣∣∇u(x, τ )
∣∣2 +

∣∣∇w(x, τ )
∣∣2)

dxdτ

+ µ1

t+s∫

t

∫

Ω

u(u − 1)2dxdτ.

Using the relation

∫

Ω

[(
u(x, t + s) − u∗(t + s)

)2 −
(
u(x, t) − u∗(t)

)2]
dx

=
∫

Ω

[(
u(x, t + s) − 1

)2 −
(
u(x, t) − 1

)2]
dx − 2

[
u∗(t + s) − u∗(t)

]

we have that
∫

Ω

[(
u(x, t + s) − u∗(t + s)

)2 −
(
u(x, t) − u∗(t)

)2]
dx = ε(t)

for

ε(t) := C

t+s∫

t

∫

Ω

(∣∣∇u(x, τ )
∣∣2 +

∣∣∇w(x, τ )
∣∣2)

dxdτ + µ1

t+s∫

t

∫

Ω

u(u − 1)2dxdτ

+ 2
∣∣u∗(t + s) − u∗(t)

∣∣.

Thanks to Lemma 3.2 and Lemma 3.3, we obtain

ε(t) → 0, as t → ∞.

By Lemma 5.1 (ii) in [10] (see also [15]), we conclude

∫

Ω

∣∣u − u∗∣∣2
dx → 0, as t → ∞.

In the same way we have that

∫

Ω

∣∣v − v∗∣∣2
dx → 0, as t → ∞

which ends the proof. !

Proof of Theorem 3.1. Thanks to Lemma 3.3 and Lemma 3.4 we obtain the first two limits 
in (3.30). In order to obtain the behavior of w, we denote by
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w∗(t) = 1
|Ω|

∫

Ω

w(x, t)dx (3.46)

and introduce the function

k(t) =
∫

Ω

(
w(x, t) − w∗(t)

)2
dt.

With the purpose of obtaining k(t) → 0, as t → ∞, by Lemma 5.1 (i) of [10], it is enough to 
demonstrate that

∣∣k′(t)
∣∣ ≤ C and

∞∫

0

k(t)dt < ∞.

The first bound in the previous relation is a consequence of the boundedness of wt and the second 
one is deduced by Poincaré’s inequality and (3.38). Thereby, we infer that

∫

Ω

∣∣w(x, t) − w∗(t)
∣∣2

dx → 0 as t → ∞. (3.47)

To end the demonstration we just need to check that w∗(t) → w̃ as t goes to infinity. After 
integration over Ω of the third equation in (1.1), we have

w∗
t = 1

|Ω|

∫

Ω

h(u, v,w)dx = h
(
u∗, v∗,w∗) + ε(t),

where

∣∣ε(t)
∣∣2 ≤ C

∫

Ω

[∣∣u − u∗∣∣2 +
∣∣v − v∗∣∣2 +

∣∣w − w∗∣∣2]
dx.

In view of (3.47) and Lemma 3.4, the last inequality implies

ε(t) → 0 as t → ∞, and

∞∫

0

ε(t)2dt < ∞.

So, w∗ − w̃ satisfies

d

dt

(
w∗ − w̃

)
= h

(
u∗, v∗,w∗) − h

(
1,1,w∗) + ε(t).

Applying the Mean Value Theorem in the right hand term, we get

d

dt

(
w∗ − w̃

)
= hw(1,1, ξ)

(
w∗ − w̃

)
+ ε(t)
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and since inf{hw} < 0 we have that

∣∣w∗ − w̃
∣∣2 ≤ cε2(t). (3.48)

Compounding (3.47) and (3.48), we obtain
∫

Ω

|w − w̃|2dx → 0 as t → ∞, (3.49)

and finally, (3.49), Lemma 3.3 and Lemma 3.4 give us the desired result. !

Remark 3.5. Assumptions (1.15) are only used in the proof of Theorem 3.1 to obtain positive 
values of λ satisfying (3.37). For this purpose, if we demonstrate that

(uχ1 + λhu)
2 < −2λhw and (vχ2 + λhv)

2 < −2λhw, (3.50)

hence (3.37) is satisfied, so that (3.38) holds. Here is the point where, in Section 1, we introduce 
the alternative hypotheses (1.17) and (1.16). Let us denote by

λ1,2(u, v,w) = −(uhuχ1 + hw) ± √
hw(2uhuχ1 + hw)

h2
u

the two roots of the equation in λ,

(uχ1 + λhu)
2 + 2λhw = 0.

Recalling (1.16), we then easily see that the discriminant of the quadratic equation is positive 
and that both roots are positive. For the second inequality in (3.50) the proof is similar and we 
find two positive roots, say 0 < λ3 < λ4,

λ3,4(u, v,w) = −(vhvχ2 + hw) ± √
hw(2vhvχ2 + hw)

h2
v

.

Hence the two inequalities in (3.50) are simultaneously verified by choosing any λ ∈ (λ1, λ2) ∩
(λ3, λ4). Notice that such λ(u, v, w) exists if λ1 ≤ λ4 and λ3 ≤ λ2, which is assured by hypothe-
sis (1.17), where λi = λi (u, v, w).

Remark 3.6. Since any stationary solution (ũ, ṽ, w̃) of (1.1), with w ≤ w̃ ≤ w,

0 ≤ ũ ≤ (k1 + µ1)(εuk01 + µ1)
−1, 0 ≤ ṽ ≤ (k2 + µ2)(εvk02 + µ2)

−1,

satisfies the estimate
∫ ∫

Ω∞

|∇ũ|2dxdt +
∫ ∫

Ω∞

|∇ṽ|2dxdt +
∫ ∫

Ω∞

|∇w̃|2dxdt ≤ C < ∞,

it follows that such solutions are necessarily constant.
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4. Applications

Example 1. We consider the case where h is a linear function, h(u, v, w) = u + v − w and the 
chemotactic sensitivities of the species χi , for i = 1, 2, are defined by χi = γi/(1 + γiw) for 
positive constants γi verifying

γi <
1
4

for i = 1,2. (4.51)

The logistic growth parameters µi satisfy

µi >
3γi

1 − 4γi
(4.52)

and the initial data (u0, v0)

‖u0‖L∞(Ω) ≤ (1 + µ1)(γ1 + µ1)
−1, ‖v0‖L∞(Ω) ≤ (1 + µ2)(γ2 + µ2)

−1.

1. We have hu = hv = 1 and hw = −1, so assumptions (1.5) and (1.6) are satisfied for εu =
εv = 1 and a lower bound w := 0.

2. Relation (1.8) is equivalent to

w ≤ ki
(1 + γiw)

γi
= kiw + ki

γi
. (4.53)

For ki = 1, (4.53) holds.
3. Taking positive constants k0i = γi , for i = 1, 2 hypothesis (1.9) is fulfilled.
4. Notice that h(0, 0, 0) = 0 and

h(u, v,w) = (1 + µ1)

γ1 + µ1
(1 + γ1w) + (1 + µ2)

γ2 + µ2
(1 + γ2w) − w.

For any upper bound w

w ≥ max
i=1,2

{
2(1 + µi)

µi(1 − 2γi ) − γi

}
, (4.54)

with µi and γi as in (4.51) and (4.52), we have h(u, v,w) ≤ 0.
5. Remains to be studied what restrictions are necessary to be fulfilled (1.15). By Remark 1.1, 

a sufficient condition to have asymptotic stability is

2γi (1 + γiw)
1 + µi

γi + µi
< 1 for i = 1,2,

which is equivalent to take w such that

w <
µi(1 − 2γi ) − γi

2γ 2
i (1 + µi)

. (4.55)
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Thanks to (4.52) there exists w satisfying (4.54) and (4.55). Under the above restrictions, we 
can apply Theorem 2.1 and Theorem 3.1, thus we have global existence of the solution (u, v, w)

of (1.1) and the constant solution is the only steady state solution satisfying

0 ≤ u ≤ u, 0 ≤ v ≤ v, w ≤ w ≤ w (4.56)

and is furthermore asymptotically stable. The unique stationary solution of system (1.1) satisfy-
ing (4.56) is given by (u, v, w) := (1, 1, 2) and

lim
t→∞

∫

Ω

|u − 1|2dx = lim
t→∞

∫

Ω

|v − 1|2dx = lim
t→∞

∫

Ω

|w − 2|2dx = 0.

Example 2. Take χi , with i = 1, 2 to be two positive constants and h(u, v, w) = αu + v − µw, 
such that µ verifies

µ > max
i=1,2

2eBµiχi

Bµi + Bχi (α − 2eB)
> 0 (4.57)

with positive α, µi , i = 1, 2, where B is

B := 2(
√

2 − 1)

max{1,α} . (4.58)

We consider the cases where the logistic parameters µi satisfy

µi >
(
2eB − α

)
χi for i = 1,2. (4.59)

In order to obtain the global existence of the solutions of (1.1) and to prove that the constant 
solution is the only steady state, and is furthermore asymptotically stable, we have to verify that 
assumptions (1.5), (1.6), (1.8)–(1.10) and (1.15) are fulfilled.

Thus, we choose w = 0 and w in the interval

w ∈
[

max
i=1,2

{
2eBµi

µµi + µχi (α − 2eB)

}
, min
i=1,2

Bχ−1
i

]
(4.60)

for B defined in (4.58).

1. We have hu = α, hv = 1 and hw = −µ, so in (1.5) and (1.6) we take εu = α and εv = 1.
2. Assumption (1.8) is verified for

ki = µwχi .

3. Inequality (1.9) is satisfied for

k0i = χi , for i = 1,2.
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4. Notice that h(0, 0, 0) = 0 and

h(u, v,w) = eχ1w
µwχ1 + µ1

αχ1 + µ1
+ eχ2w

µwχ2 + µ2

χ2 + µ2
− µw.

As in the previous example, after some computations, we find that if w is greater than or 
equal to the left interval extreme of (4.60), then h(u, v,w) ≤ 0.

5. In order to obtain the stability, we need

w < Bχ−1
i .

Therefore, for every w as in (4.60), for all initial data (u0, v0, w0) of (1.1) satisfying

0 ≤ u0 ≤ µwχ1 + µ1

αχ1 + µ1
, 0 ≤ v0 ≤ µwχ2 + µ2

χ2 + µ2
and 0 ≤ w0 ≤ w

such that

u0 +≡ 0, and v0 +≡ 0

the above conditions (4.57)–(4.60) are sufficient to guarantee the global existence and to apply 
Theorem 3.1. The unique stationary solution of system (1.1) satisfying

0 ≤ u ≤ u, 0 ≤ v ≤ v, w ≤ w ≤ w,

is given by

(u, v,w) :=
(

1,1,
α + 1

µ

)

and it satisfies

lim
t→∞

∫

Ω

|u − 1|2dx = lim
t→∞

∫

Ω

|v − 1|2dx = lim
t→∞

∫

Ω

∣∣∣∣w − 1 − α

µ

∣∣∣∣
2

dx = 0.

Example 3. We consider h given by

h(u, v,w) = u + v + α

1 + γw
− β, and χi = γi

1 + γiw
for i = 1,2

with positive constants α, β , γ , γ1 and γ2 satisfying

α ≥ β (4.61)

γ ≤ min
i=1,2

{γ1,γ2}. (4.62)
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We take w = 0 and w in the interval

w ∈ [w1,w2] ∩
[

α

βγi
+ α − β

βγ
,+∞

)
(4.63)

where w1 and w2 are the positive roots of the second order equation in w

2(1 + γiw)2
(

γi
β2

4α
+ µi

)
γi < αγ

(
γi + µi(γw + 1)

)
. (4.64)

In order to obtain such results we have to verify that assumptions (1.5), (1.6), (1.8)–(1.10)
and (1.16) hold.

1. We have

hu = hv = 1
1 + γw

, hw = − (u + v + α)γ

(1 + γw)2 ,

so (1.5) and (1.6) fulfill for

εu = εv = 1
1 + γw

.

2. Taking

ki = γi
β2

4α
and k0i = γi , for i = 1,2,

we have (1.8) and (1.9).
3. Relation (1.16) is equivalent to

2(1 + γiw)
γi

β2

4α + µi
γi

γw+1 + µi
<

αγ

γi
for i = 1,2 (4.65)

and taking w ∈ [w1,w2], we get the desired result.
4. Notice that h(0, 0, 0) = α − β and thanks to assumption (4.61), we have that h(0, 0, 0) ≥ 0. 

Relation (1.10) is equivalent to

h(u, v,w) = 2(1 + γiw)
γi

β2

4α + µi
γi

γw+1 + µi
+ α − β(γw + 1) ≤ 0, for i = 1,2.

Once we have (4.65), then, for any w ≥ α/(βγi ) + (α − β)/(βγ ), we obtain h(u, v,w) ≤ 0
and (1.10) is satisfied.

Now that all the required hypotheses are verified, as we have discussed in Remark 1.1, we 
can apply Theorem 2.1 and Theorem 3.1 and the solution (u, v, w) of (1.1) is globally uniformly 
bounded and satisfies
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lim
t→∞

∫

Ω

|u − 1|2dx = lim
t→∞

∫

Ω

|v − 1|2dx = lim
t→∞

∫

Ω

|w − w̃|2dx = 0

for w̃ such that h(1, 1, w̃) = 0, i.e.,

w̃ = 2 + α − β

βγ
,

for initial data satisfying

0 ≤ u0 ≤
γ1β

2

4α + µ1
1

1+γwγ1 + µ1
, 0 ≤ v0 ≤

γ2β
2

4α + µ2
1

1+γwγ2 + µ2
and 0 ≤ w0 ≤ w

and

u0 +≡ 0, and v0 +≡ 0.
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