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Abstract. In this paper we consider a general system of reaction-diffusion

equations and introduce a comparison method to obtain qualitative properties

of its solutions. The comparison method is applied to study the stability of
homogeneous steady states and the asymptotic behavior of the solutions of

different systems with a chemotactic term. The theoretical results obtained

are slightly modified to be applied to the problems where the systems are
coupled in the differentiated terms and / or contain nonlocal terms. We obtain

results concerning the global stability of the steady states by comparison with

solutions of Ordinary Differential Equations.

1. Introduction. In this paper we apply a comparison method to parabolic sys-
tems in order to study the stability of homogeneous steady states and the asymptotic
behavior of the solutions of different problems. Comparison methods based on upper
and lower solutions have been applied to a large number of reaction-diffusion sys-
tems as the extensive literature shows (see for instance [10] and reference therein).
Comparison method based on ODE′s systems have already used in the last decades,
see for instance [7], [15] and [8] for chemotactic systems of two PDE′s and extended
to parabolic-parabolic-elliptic chemotactic systems in [16], [9] and [14]. We study
a reaction-diffusion parabolic system “weakly coupled” (i.e. the system is coupled
only in the terms which are not differentiated) in a bounded domain Ω ⊂ IRn with
regular boundary ∂Ω. We denote by ΩT the set defined by (x, t) ∈ Ω × (0, T ) and
consider the problem

ut − L(u) = g(u), (x, t) ∈ ΩT ,

Bu = 0, (x, t) ∈ ∂Ω× (0, T ),

u = u0, x ∈ Ω,

(1)
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with u := (u1, . . . , um), L := (L1, . . . ,Lm). Li is a second-order linear elliptic
differential operator of the form

Li(ui) :=

n∑
j,k=1

∂

∂xj
aijk(x, t)

∂

∂xk
ui −

n∑
j=1

bij(x, t)
∂

∂xj
ui − ci(x, t)ui,

with measurable coefficients aijk, bi := (bi1, . . . , b
i
n) and ci, satisfying the ellipticity

condition
n∑

j,k=1

aijk(x, t)ξjξk ≥ Λ|ξ|2 for some Λ > 0 and ξ ∈ IRn, (2)

and
aijk ∈ C(ΩT ); |aijk|, |bij |, |ci| < Λ1 for some Λ1 > 0. (3)

The second equation in (1) gives the boundary conditions where the operator B =
(B1, . . . ,Bm) is defined by

Bi(u) := (Ai∇ui) · ν where Ai := (aijk(x, t))j,k=1...n

and ν is the exterior unit normal on ∂Ω. We assume that

g is Loc. Lipschitz continuous in u and Hölder continuous in x and t. (4)

and the initial data
u0 ∈ (W 2,p(Ω))m for p > n (5)

satisfies the boundary condition.
If there exist functions u := (u1, . . . , um) and u := (u1, . . . , um) such that

u, u ∈ [Lp(0, T : W 2,p(Ω)) ∩W 1,p(0, T : Lp(Ω))]m

for some p > n, satisfying the following system of 2m− parabolic inequalities

∂

∂t
ui − Li(ui) ≥ maximum

uj ≤ uj ≤ uj for j 6= i

ui = ui

gi(u), (x, t) ∈ ΩT ,

Biui ≥ 0 (x, t) ∈ ∂Ω× (0, T ),

∂

∂t
ui − Li(ui) ≤ minimum

uj ≤ uj ≤ uj for j 6= i

ui = ui

gi(u), (x, t) ∈ ΩT ,

Biui ≤ 0, (x, t) ∈ ∂Ω× (0, T ),

ui(x, 0) ≤ ui(x, 0) ≤ ui(x, 0), x ∈ Ω,

(6)

then, there exists at least one solution to the problem, satisfying

ui ≤ ui ≤ ui, for i = 1, . . . ,m.

A similar comparison method for regular coefficients can be found in [10]. For
cooperative systems, i.e., under assumptions

∂gi
∂uj
≥ 0 for i 6= j,

the solutions have also the property of order preserving, i.e., if

ui(0, x) ≤ vi(0, x) for x ∈ Ω,
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then

ui(t, x) ≤ vi(t, x)

for the maximal interval of existence, see for instance [11]. The order preserving
property is not satisfied for general nonlinear systems of parabolic equations.

In this work we apply a comparison method to two different systems of partial
differential equations arising from biological processes. The results in the literature
can not be applied directly to the problems since the equations are coupled in the
differentiated terms or contain nonlocal expressions.

• The first problem we study is the asymptotic stability of homogeneous steady
state of a two competitive populations of biological species, both of which
are attracted chemotactically by the same signaling substance. The chemical
is introduced by a forcing term f and it is decoupled from the two previous
equations.
ut +A1(u) = −χ1∇ · (u∇w) + µ1u(1− u− a1v), x ∈ Ω, t > 0,

vt +A2(v) = −χ2∇ · (v∇w) + µ2v(1− a2u− v), x ∈ Ω, t > 0,

−∆w + λw = f(x, t), x ∈ Ω, t > 0,

(7)

where µ1 and µ2 represent the growth rates of species u and v; the terms
−µ1u

2 and −µ1v
2 represent the inhibition effects that u and v have on the

growth of u and v, respectively; the term −µ1a1uv measures the influence of
v on the growth of u; and −µ2a2vu the inhibiting effect of u on the growth of
v. In (7) Ai (for i = 1, 2) are second order differential operator of Leray-Lions
type (see [6]) defined by

A1u := −
n∑

j,k=1

∂

∂xj
a1
jk(x, u,∇u)

∂u

∂xk
, A2v := −

n∑
j,k=1

∂

∂xj
a2
jk(x, v,∇v)

∂u

∂xk

satisfying
H1. A1 : V1 → V ′1 and A2 : V2 → V ′2 are continuous for V1 := W 1,p(Ω) and

V2 := W 1,q(Ω).
H2. There exists C > 0 such that ‖A1u‖V ′1 ≤ C‖u‖V1 and ‖A2v‖V ′2 ≤ C‖v‖V2

for u ∈ V1, v ∈ V2.
H3. Ai (for i = 1, 2) are strongly monotone in the following interpolation

sense: there exist θi ∈ (0, 1] and c > 0 such that for all φ1, φ2 ∈ Vi we
have

c‖φ1 − φ2‖Vi ≤< Aiφ1 −Aiφ2, φ1 − φ2 >
θi (‖φ1‖Vi + ‖φ2‖Vi)1−θi .

H4. < Aiφ1 −Aiφ2, φ1 − φ2 >≥ 0 for all φ1, φ2 ∈ Vi (i = 1, 2).
Notice that A1 = ∆p and A2 = ∆q satisfy (H1)-(H4).

We consider the following boundary conditions in a bounded and regular
domain Ω ⊂ IRn, for n ≥ 1

n∑
j,k=1

a1
jk

∂u

∂xk
νj =

n∑
j,k=1

a2
jk

∂v

∂xk
νj =

n∑
j=1

∂w

∂j
νj = 0, x ∈ ∂Ω, t > 0 (8)

and initial data

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω (9)
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satisfying (8). We also assume that f ∈ Cα,1+β
x,t (Ω × [0, T ]), f is uniformly

bounded and satisfies

‖f − 1

|Ω|

∫
Ω

f‖L∞(Ω) → 0, as t→∞. (10)

The problem (7) is considered as a first step to study the control problem, i.e.
to find f in a suitable space such that the solutions have a desired behavior.
The system with constant diffusion coefficients where w satisfies the linear
elliptic equation

−∆w + λw = k1u+ k2v, x ∈ Ω, t > 0,

have been already analyzed in [16] for a range of parameters, see also [9].
• The second application considers a degenerate reaction-diffusion system with

nonlocal sources modelling a cooperative system of two biological species. We
consider the unknown densities “u” and “v” satisfying the system

ut = ∆ur1 − χ1∇(u∇w)− au+
∫

Ω
|v|p, x ∈ Ω, t > 0,

vt = ∆vr2 − χ2∇(v∇w)− bv +
∫

Ω
|u|q, x ∈ Ω, t > 0,

−∆w + λw = u+ v, x ∈ Ω

with Neumann boundary conditions

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0, x ∈ ∂Ω, t > 0,

for r1, r2 ≥ 1, p, q, a, b > 0 and |Ω| = 1. We obtain results on the asymptotic
behavior and blow-up for some range of initial data and parameters. The
system for χ1 = χ2 = 0 has been also used to model the temperature of two
substances in a combustible mixture (see for instance [12], [13] or [17] and
reference therein).

We assume that the initial data satisfy

u0, v0 ∈ C2+α
x (Ω) (11)

and

u0, v0 > 0 in Ω,
∂u0

∂ν
=
∂v0

∂ν
= 0 in ∂Ω. (12)

In order to study the mentioned problems above, we first analyze the weakly
coupled general system. For the completeness of the result, we detail the comparison
method for the problem (1) in Section 2. These results can not be applied directly
to the problems studied in Section 3 due to the nonlocal terms or nonlinear diffusion
coefficient that we treat separately.

2. Comparison method. In this section we study the comparison method for the
problem (1) employing Schauder’s fixed point theorem. We assume that there exists
T > 0 such that the solutions of problem (6) exist in (0, T ).

The main purpose of this section is the following theorem:

Theorem 2.1. Under hypothesis (2)–(5), if the initial data satisfy

ui(x, 0) ≤ ui(x, 0) ≤ ui(x, 0), (13)

the unique solution of (1) fulfills

ui ≤ ui ≤ ui, for i = 1 . . .m, (14)

where ui and ui satisfy (6).



ON A COMPARISON METHOD TO REACTION-DIFFUSION SYSTEMS 2673

Proof. Let A be defined as follows:

A :=
{
u ∈ [C0(ΩT )]m such that ui ≤ ui ≤ ui, for i = 1 . . .m

}
.

Notice that A is a bounded set in [C0(ΩT )]m. Let J : A→ A be defined by

J(ũ) = u

where u is the solution to the problem ut − L(u) = g̃(u), (x, t) ∈ ΩT

Bu = 0, (x, t) ∈ ∂Ω× (0, T )
(15)

with g̃(u) := (g̃1(u), . . . , g̃m(u)) for

g̃i(u) = gi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũm).

For simplicity, in order to prove that J has a fixed point, we divide the proof into
several steps.
Step 1. We see first that J is well defined for T small enough.

We linearize the problem and apply a fixed point argument to prove the existence
and uniqueness of solution of (15). Due to parabolic regularity and assumptions
(2), (3) and (5) the solution to the linear decoupled problem belongs to

[Lp(0, T : W 2,p(Ω)) ∩W 1,p(0, T : Lp(Ω))]m

for some p > n (see Remark 48.3 in [11]). Thanks to (4) we obtain using a fixed
point method that

u ∈ [Lp(0, T : W 2,p(Ω)) ∩W 1,p(0, T : Lp(Ω))]m,

which implies

u ∈ [C0(ΩT )]m, for T small enough.

Step 2. u ∈ A.
We denote by

U i(x, t) := ui(x, t)− ui(x, t), U i(x, t) := ui(x, t)− ui(x, t),

gi := maximum
uj ≤ uj ≤ uj for j 6= i

ui = ui

gi(u), g
i

:= minimum
uj ≤ uj ≤ uj for j 6= i

ui = ui

gi(u), for t > 0,

and the standard positive and negative part functions:

(s)+ =

{
s if s ≥ 0,
0 otherwise

(s)− = (−s)+.

With these notations, resting (6) and (1), we obtain the following PDE system

∂

∂t
U i − LiU i ≤ g̃i(u)− gi, (16)

∂

∂t
U i − LiU i ≥ g̃i(u)− g

i
, (17)

BiU i ≤ 0, (18)

BiU i ≥ 0, (19)

U i(x, 0) = ui(x, 0)− ui(x, 0), U i(x, 0) = ui(x, 0)− ui(x, 0). (20)
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We take (U i)+ as test function in (16), i.e., we multiply by (U i)+ and integrate by
parts over Ω to obtain, after some computations:

1

2

d

dt

∫
Ω

(U i)
2
+ +

∫
Ω

Λ|∇(U i)+|2 +

∫
Ω

bi∇(U i)+(U i)+ +

∫
Ω

ci(U i)
2
+ ≤∫

Ω

(g̃i(u)− gi) (U i)+.

(21)

Thanks to (3), we estimate the third term in the left part of inequality (21) as
follows ∫

Ω

bi(x, t)∇(U i)+(U i)+ ≤ k1

∫
Ω

(U i)
2
+ +

Λ

4

∫
Ω

|∇(U i)+|2.

In order to simplify the term g̃i(u)− gi, we add ±gi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũm),
i.e., g̃i(u)− gi =

g̃i(u)− gi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũm) + gi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũm)− gi.
Thanks to the definition of gi it follows

gi(ũ1, . . . , ũi−1, ui, ũi+1, . . . , ũm)− gi ≤ 0,

and by Mean Value Theorem

g̃i(u)− gi ≤
∂

∂ui
g̃i(u)

∣∣∣∣
ui=ξ

U i

for some ξ ∈ (ui, ui) ∪ (ui, ui). By assumption (4) we have∫
Ω

(g̃i(u)− gi) (U i)+ ≤ ki
∫

Ω

(U)2
+.

Therefore, from (21) it follows

1

2

d

dt

∫
Ω

(U i)
2
+ +

Λ

4

∫
Ω

|∇(U i)+|2 ≤ ki
∫

Ω

(U i)
2
+, (22)

for t ∈ (0, T ).
In the same fashion as before we multiply equation (17) by (U i)− to derive, using

similar computations as those in (21), the inequality

1

2

d

dt

∫
Ω

(U i)
2
− +

Λ

4

∫
Ω

|∇(U i)−|2 ≤ k′i
∫

Ω

(U i)
2
−. (23)

Finally, adding (22) and (23) we see that

d

dt

∫
Ω

m∑
i=1

(
(U i)

2
+ + (U i)

2
−
)
≤ K

∫
Ω

m∑
i=1

(
(U i)

2
+ + (U i)

2
−
)
, (24)

for all t ∈ (0, T ) and K = maxi=1,...,m{ki, k′i}. By (13), the initial data satisfy

(U i)+ = (U i)− = 0 at t = 0 and we apply Gronwall′s Lemma to achieve

(U i)+ = (U i)− = 0,

which proves u ∈ A for T small enough. The solution is extended to (0, Tmax),
where (0, Tmax) is the maximum interval of definition of ui and ui.
Step 3. Compactness.

Since ui ∈ L∞(0, T : L∞(Ω)) we have that ut − Lu ∈ Lq(0, T : Lq(Ω)) for any
q <∞, by (5) and [11] (Remark 48.3 (ii)) we have that

ui ∈ Yp := Lp(0, T : W 2,p(Ω)) ∩H1,p(0, T : Lp(Ω)),
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for some p > n. Since Yp ⊂ C0((0, T )×Ω) is a compact embedding for T <∞ and
A is a bounded set, we have, by Schauder fixed point theorem that J has at least
one fixed point in A, the solution to the problem. Uniqueness is a consequence of
the regularity of g.

3. Applications.

3.1. Problem 1. First we study a system of type (7), (8) and (9) consisting on
three partial differential equations modelling the spatio-temporal behavior of two
competitive populations of biological species (u, v), both of which are attracted
chemotactically by the same signal substance “w”.

In [16], the authors have considered the case f = u+ v and they obtained that,
when 0 ≤ a1 < 1 and 0 ≤ a2 < 1, the system possesses a uniquely determined
spatially homogeneous positive equilibrium (u∗, v∗), globally asymptotically stable
within a certain nonempty range of the logistic growth coefficients µ1 and µ2. In
our case the parameters λ, χ1, χ2, µ1 and µ2 are assumed to be positive.

We rewrite system (7) as follows
ut +A1u = −χ1∇w · ∇u+ χ1u(f(x, t)− λw) + µ1u(1− u− a1v), in ΩT ,

vt +A2v = −χ2∇w · ∇v + χ2v(f(x, t)− λw) + µ2v(1− a2u− v), in ΩT ,

−∆w + λw = f(x, t), in ΩT ,

where Ai satisfy (H1)-(H4).

Remark 1. We consider the following auxiliary problem

ut +A1u = f1, vt +A2v = f2 in ΩT

with the boundary conditions given by (8) for any f1 ∈ Lp(0, T : W−1,p(Ω)) and
f2 ∈ Lq(0, T : W−1,q(Ω)). Since Ai satisfy assumptions (H1)-(H4) we obtain
the existence and uniqueness of solutions (u, v) ∈ (Lp(0, T : W 1,p(Ω)), Lq(0, T :
W 1,q(Ω))). The proof is similar to the result in Derlet and Takáč [6] Proposition
2.1, where homogeneous Neumann boundary conditions are considered. An stan-
dard fixed point argument in fi gives the existence of weak solutions. Uniqueness of
solutions is a consequence of assumption (H4) and regularity of the reaction terms.

Since Theorem 2.1 can not be applied directly to the system due to the differen-
tiated terms, we consider the following lemma.

Lemma 3.1. Under hypothesis (2)–(5) and (H1)-(H4) we have that if there exist
(u, u), (v, v) such that

ut +A1u ≤ −χ1∇w · ∇u+ χ1u(f(x, t)− λw) + µ1u(1− u− a1v), in ΩT ,

ut +A1u ≥ −χ1∇w · ∇u+ χ1u(f(x, t)− λw) + µ1u(1− u− a1v), in ΩT ,

vt +A2v ≤ −χ2∇w · ∇v + χ2v(f(x, t)− λw) + µ2v(1− a2u− v), in ΩT ,

vt +A2v ≥ −χ2∇w · ∇v + χ2v(f(x, t)− λw) + µ2v(1− a2u− v), in ΩT ,

−∆w + λw = f(x, t), in ΩT ,

satisfying the boundary conditions (8) and the inequalities

u(0) ≤ u(x, 0) ≤ u(0), v(0) ≤ v(x, 0) ≤ v(0) (25)

then, the unique solution of (7) fulfills

u ≤ u ≤ u, v ≤ v ≤ v. (26)
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Proof. We denote by

U(x, t) := u(x, t)− u(t), U(x, t) := u(x, t)− u(t),

and

V (x, t) := v(x, t)− v(t), V (x, t) := v(x, t)− v(t).

The proof follows the steps of Theorem 2.1 except for the step 1, which should be
replaced by Remark 1. The rest of the proof is similar to Theorem 2.1 except for
the differentiated terms which we treat in the following way

< A1u−A1u, (U)+ >=

∫
Ω

n∑
j,k=1

a1
jk(x, u,∇u)

∂

∂xj
U

∂

∂xk
(U)+ ≥ 0,

∫
Ω

(U)+∇U · ∇w = 1
2

∫
Ω
∇(U)2

+ · ∇w

= − 1
2

∫
Ω

(U)2
+∆w

= 1
2

∫
Ω

(U)2
+(f − λw)

≤ c
∫

Ω
(U)2

+.

The rest of the terms

< A1u−A1u, (U)− >, < A2v −A1v, (V )+ >, < A2v −A2v, (U)− >,∫
Ω

(U)−∇U · ∇w,
∫

Ω

(V )+∇V · ∇w and

∫
Ω

(V )−∇V · ∇w

are treated in the same fashion. The rest of the proof reproduces the steps of
Theorem 2.1.

The main result of this section is as follows

Theorem 3.2. Let n ≥ 1 and Ω ⊂ IRn be a bounded domain with smooth boundary.
Assume that λ, χi, µi and ai are positive for i = 1, 2 and f satisfies (10). For all
positive initial data u0 ∈ C0(Ω̄) and v0 ∈ C0(Ω̄), the solution (u, v) to (7) is bounded
and satisfies

‖u(·, t)− u∗‖L∞(Ω) + ‖v(·, t)− v∗‖L∞(Ω) → 0 as t→∞ (27)

where the constant steady (u∗, v∗) takes one of the following values

• (u∗, v∗) =

(
1− a1

1− a1a2
,

1− a2

1− a1a2

)
if 0 ≤ ai < 1, i = 1, 2,

• (u∗, v∗) = (1, 0), if 0 ≤ a1 < 1 < a2,
• (u∗, v∗) = (0, 1), if 0 ≤ a2 < 1 < a1.

If 1 < ai, for i = 1, 2 and f = 0, we have that the solution satisfies (27) for (u∗, v∗)
given by

• (u∗, v∗) = (1, 0) if max
x∈Ω

v0 < min
x∈Ω

u0
a2 − 1

a1 − 1
,

• (u∗, v∗) = (0, 1) if min
x∈Ω

v0 > max
x∈Ω

u0
a2 − 1

a1 − 1
.
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In order to prove the theorem we introduce a system of Ordinary Differential
Equations for the upper and lower solutions

u′ = u
[
µ1 − µ1u− µ1a1v + χ1 sup

x∈Ω
{f(x, t)− λw}

]
, t > 0,

u′ = u
[
µ1 − µ1u− µ1a1v + χ1 inf

x∈Ω
{f(x, t)− λw}

]
, t > 0,

v′ = v
[
µ2 − µ2a2u− µ2v + χ2 sup

x∈Ω
{f(x, t)− λw}

]
, t > 0,

v′ = v
[
µ2 − µ2a2u− µ2v + χ2 inf

x∈Ω
{f(x, t)− λw}

]
, t > 0,

with positive initial data u0, u0, v0 and v0. Following the outline of Theorem 2.1,
we analyze the stability of the system. Denoting by

M(t) := sup
x∈Ω
{f(x, t)− λw(x, t)}, m(t) := inf

x∈Ω
{f(x, t)− λw(x, t)}, (28)

we observe that the system can be expressed as two independent systems of equa-
tions: 

u′ = u
[
µ1 − µ1u− µ1a1v + χ1M(t)

]
,

v′ = v
[
µ2 − µ2a2u− µ2v + χ2m(t)

]
,

u′ = u
[
µ1 − µ1u− µ1a1v + χ1m(t)

]
,

v′ = v
[
µ2 − µ2a2u− µ2v + χ2M(t)

]
.

(29)

We shall study the solutions’ properties of the first system in (29). The other one
is symmetric and all the results obtained for the first one are valid for the second
system.

We analyze (29) taking into account that M(t)→ 0 and m(t)→ 0 as t→∞ and
we can justify that it is natural to work in this framework. If we denote by

f(t) = sup
x∈Ω

f(x, t), f(t) = inf
x∈Ω

f(x, t),

by Maximum Principle, in (7), we know that

f(t) ≤ λw(x, t) ≤ f(t), ∀ x ∈ Ω. (30)

By assumption (10) and taking into account (30), we obtain

lim
t→∞

‖w − 1

λ|Ω|

∫
Ω

f‖L∞(Ω) = 0

and therefore

M(t) := sup
x∈Ω
{f(x, t)− λw(x, t)} → 0, m(t) := inf

x∈Ω
{f(x, t)− λw(x, t)} → 0. (31)

Notice that, by integration in −∆w + λw = f , we have that

∫
Ω

(f − λw) = 0, for

all t > 0 and it implies that M(t) ≥ 0 and m(t) ≤ 0.
System (29) has been widely studied in the literature. For the autonomous case

(i.e. M(t) = m(t) = 0) Braun in [5] details the asymptotic behavior depending
on the parameters. To the author’s knowledge, the asymptotic properties of the
solutions for the general case of the nonautonomous system (29) have been studied
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for the first time by Ahmad in [1] and [4], under certain assumptions for the coeffi-
cients, i.e., always assumed to be bounded, continuous and nonnegative. Using only
simple arguments based on differential inequalities and standard theorems concern-
ing continuity of solutions of differential equations with respect to initial conditions
and parameters, it is possible to find optimal bounds and convergence results for
the solutions of (29).

For readers′ convenience we quote the results in [5], [1] and [4] used in the proof
of Theorem 3.2.

• Case I. M = m = 0.
In this case we have an autonomous system (commonly called an au-

tonomous Lotka Volterra system) as a model of competition between two
species {

u′1 = u1 [µ1 − µ1u1 − µ1a1u2],

u′2 = u2 [µ2 − µ2a2u1 − µ2u2].
(32)

For M = m = 0, both systems in (29) coincide, and for simplicity, we had
denoted their solutions by (u1 = u = u, u2 = v = v). The equilibrium points
of (32) are (0, 0), (1, 0), (0, 1) and

(u∗, v∗) =

(
1− a1

1− a1a2
,

1− a2

1− a1a2

)
. (33)

(I.a) In [5] and the references therein, it is proved that a phase plane analysis
of this autonomous case shows that the conditions

0 ≤ ai < 1 for i = 1, 2 (34)

are necessary and sufficient for the existence of a unique stable equilibrium
point (u∗, v∗) of system (32) given by (33), such that both components are
positive and it globally attracts all solutions with initial values in the open
first quadrant of the (u1, u2) plane.

If (34) fails, then, generally the model either predicts that one of the com-
petitors always becomes extinct while the other persists, or that the outcome
of the competition depends on the initial data. Another feature of the system
(32) is that if (u1, u2) is a solution which is nonnegative in both components
then the change of variables (v1, v2) = (u1,−u2) converts (32) to a coopera-
tive system. Cooperative systems are well known to be order preserving so if
(u1, u2) and (ũ1, ũ2) are nonnegative solutions to (32) with u1(0) ≥ ũ1(0) and
u2(0) ≥ ũ2(0) then u1(t) ≥ ũ1(t) and u2(t) ≥ ũ2(t) for all t > 0.

If conditions (34) fail two different cases occur:
(I.b) Assume that in (32)

0 ≤ a1 < 1 < a2. (35)

Then, any solution (u1(t), u2(t)) of (32) with u1(t0) > 0, u2(t0) > 0 for some
t0 > 0, verifies (u1(t), u2(t)) → (1, 0), as t → ∞. This is sometimes referred
to as the principle of competitive exclusion. That is, u2 approaches zero as
t approaches infinity for every solution (u1(t), u2(t)) of (32) with u1(t0) > 0.
By symmetry, if we assume that

0 ≤ a2 < 1 < a1, (36)
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then (u1(t), u2(t))→ (0, 1), as t→∞.
(I.c) Assume that

a1 > 1 and a2 > 1. (37)

Then,
1. The equilibrium solution (0, 0) of (32) is unstable.
2. The equilibrium solutions (0, 1) and (1, 0) of (32) are locally asymptoti-

cally stable.
3. The equilibrium solution (u∗, v∗) of (32) defined by (33) is a saddle point.

• Case II. M(t)→ 0 and m(t)→ 0. We consider our problem as a particular
case of a Lotka-Volterra system (see a large and complete study of this problem
in [1] and [4]) {

u′1 = u1 [µ̃1(t)− µ1u1 − µ1a1u2],

u′2 = u2 [µ̃2(t)− µ2a2u1 − µ2u2].
(38)

Given a function g(t), which is bounded above and below by positive con-
stants for t0 ≤ t <∞, we let gL and gM denote inf

t≥t0
g(t) and sup

t≥t0
g(t), respec-

tively. The coefficients in (38) are always assumed to be bounded, continuous,
and nonnegative, therefore the solution exists in (0,∞) and it is uniformly
bounded.
(II.a) In [1] it was shown that if the coefficients µ̃i(·) are bounded below by
positive constants, then, if the inequalities

µ̃1Lµ2 > a1µ1µ̃2M and µ̃2Lµ1 > a2µ2µ̃1M , (39)

hold, then there exists a solution u∗(t) = (u∗1(t), u∗2(t)) such that the inequal-
ities

0 <
µ̃1Lµ2 − a1µ1µ̃2M

µ1µ2 − a1a2µ1µ2
≡ s1 ≤ u∗1(t) ≤ r1 ≡

µ̃1Mµ2 − a1µ1µ̃2L

µ1µ2 − a1a2µ1µ2
,

0 <
µ1µ̃2L − µ̃1Ma2µ2

µ1µ2 − a1a2µ1µ2
≡ r2 ≤ u∗2(t) ≤ s2 ≡

µ1µ̃2M − µ̃1La2µ2

µ1µ2 − a1a2µ1µ2

(40)

hold for t0 ≤ t < ∞. These bounds are optimal since, in the autonomous
space, the upper bound for each component coincides with the lower bound
for that component. Another important result obtained in [1] is: if conditions
(40) hold and (u1(t), u2(t)) and (v1(t), v2(t)) are any two solutions of (38)
such that uk(t1) > 0, vk(t1) > 0 for k = 1, 2 and for some t1 ≥ t0, then
u1(t) − v1(t) → 0 and u2(t) − v2(t) → 0 as t → ∞. Thus it follows that if
(u1(t), u2(t)) is any solution of (38) with both components positive at some
time and ε is any arbitrary positive number, then

s1 − ε < u1(t) < r1 + ε, r2 − ε < u2(t) < s2 + ε

for sufficiently large t.
Notice that if u1(t) and u2(t) are positive solutions of the logistic equations

u′1(t) = u1(t)[µ̃1(t)− µ1u1(t)] and u′2(t) = u2(t)[µ̃2(t)− µ2u2(t)], respectively,
then the pairs (u1(t), 0) and (0, u2(t)) are solutions of (38). Moreover, the open
first quadrant in the (u1, u2)-plane is invariant in the sense that if (u1(t), u2(t))
is a solution of (38) with u1(0) > 0 and u2(0) > 0 then u1(t) > 0 and u2(t) > 0
for all t > 0.
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If conditions (39) fail the following occurs:
(II.b) Under the assumption that the inequalities

µ̃1Lµ2 > a1µ1µ̃2M , and µ1µ̃2M ≤ a2µ2µ̃1L (41)

hold (these are equivalent to (35) in the constant coefficients case), the main
result proved in [2] gives us exact information about the development of the
solutions of (38): If (u1(t), u2(t)) is any solution of (38) such that u1(t0) > 0
and u2(t0) > 0 for some t0 in (−∞,∞), then u2(t)→ 0 and u1(t)− û(t)→ 0
as t→∞, where û(t) is the solution of the logistic equation

û′(t) = û(t)
[
µ̃1(t)− µ1û(t)

]
, (42)

such that δ1 ≤ û(t) ≤ δ2 on (−∞,∞) where δ1 and δ2 are any numbers
satisfying the inequalities 0 < δ1 < µ̃1L/µ1 ≤ µ̃1M/µ1 < δ2.

Of course, a similar result, where the role of u1 and u2 are interchanged,
will hold if the inequalities in (41) are replaced by

µ̃1Mµ2 ≤ a1µ1µ̃2L, µ1µ̃2L > a2µ2µ̃1M . (43)

An extension of this principle for nonautonomous systems was given in [2],
where it was shown that similar algebraic inequalities imply that there can be
no coexistence of the two species. One of them will be driven to extinction
while the other will stabilize at a certain solution of a logistic equation.

In [3] it was considered a somewhat more general system, and given a
further extension of the result by introducing a sufficient condition that is
implied by (41) (and (43) respectively). If in (38) the coefficients verify the
following conditions: µ̃i(t) = µi + fi(t) are continuous and fi(t) ≤ ci e

−γit

where ci and γi are positive constants and we do not assume the growth rate
µi is positive, if (35) holds then if (u1(t), u2(t)) is any solution of (38) such
that u1(t0) > 0, u2(t0) > 0 , then u2(t) → 0 exponentially and u1(t) → û(t)
as t→∞, where û(t) is the unique positive solution of

û′(t) = û(t)
[
µ1 − µ1û(t)

]
.

Proof of Theorem 3.2. Observe that all the coefficients for the general case
(38) are always assumed to be bounded, continuous, and nonnegative: in our case,
taking into account the continuity of f and the definitions of M and m (31), we
confirm that these hypothesis are verified. For t0 large enough, taking into account
(31), we can choose the positive parameters µi, χi, i = 1, 2, such that

µi + χim(t) ≥ 0, ∀ t ≥ t0. (44)

This will be the framework along the rest of this section and all the results are
valid under conditions (44). Taking into account the structure of time depending
coefficients, by (31), in limit, we rediscover from conditions corresponding to non-
autonomous case the same conditions of the constant coefficients case. Thanks to
above results concerning the asymptotic behavior of (29) and (38) we have

• Under assumption (34) for positive parameters λ, χ1, χ2, µ1 and µ2, any so-
lution (u(t), v(t)), (u(t), v(t)) of (29), with positive initial data satisfies

u(t)→ u∗, u(t)→ u∗, v(t)→ v∗, v(t)→ v∗ as t→∞,

with (u∗, v∗) given by (33). In other words, under assumptions (34), we
have that all solutions (u(t), v(t)) and (u(t), v(t)) of (29), with both pairs
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(u(t0), v(t0)) and (u(t0), v(t0)) positive, ultimately approach the equilibrium
solution (33). Therefore, applying (14) and Lemma 3.1 we conclude

||u(·, t)− u∗||L∞(Ω) + ||v(·, t)− v∗||L∞(Ω) → 0 as t→∞. (45)

• Assume the parameters λ, χ1, χ2, µ1 and µ2 are positive and (35) holds. For
any solution (u(t), v(t)), (u(t), v(t)) of system (29), with positive initial data,
we have

u(t)→ 1, u(t)→ 1, v(t)→ 0, v(t)→ 0 as t→∞.

This is equivalent to saying that the species v and v become extinct if u(t0) > 0
and u(t0) > 0 and thanks to Theorem 2.1 and Lemma 3.1 we have

||u(·, t)− 1||L∞(Ω) + ||v(·, t)||L∞(Ω) → 0 as t→∞. (46)

By symmetry if a1 > 1 and 0 ≤ a2 < 1 we have

||u(·, t)||L∞(Ω) + ||v(·, t)− 1||L∞(Ω) → 0 as t→∞. (47)

• If (37) is satisfied, M = m = 0 (i.e. f ≡ 0) and the initial data (u0, v0) of (7)
verifies

v0 = min
x
v0 > u0

a2 − 1

a1 − 1
= max

x
u0
a2 − 1

a1 − 1
, (48)

then

(u, v)→ (0, 1), (u, v)→ (0, 1) as t→∞ (49)

and therefore, by Theorem 2.1 and Lemma 3.1

||u(·, t)||L∞(Ω) + ||v(·, t)− 1||L∞(Ω) → 0 as t→∞. (50)

The proof of the asymptotic behavior of (u, u, v, v) is similar to Theorem 6 in
[Braun [5], Chapter 4, section 11] see also exercise 6 in [5] p. 456.

On the other hand, if the initial data (u0, v0) of (7) satisfies

v0 = max
x

v0 < u0

a2 − 1

a1 − 1
= min

x
u0
a2 − 1

a1 − 1
, (51)

then

(u, v)→ (1, 0), (u, v)→ (1, 0) as t→∞ (52)

and therefore

||u(·, t)− 1||L∞(Ω) + ||v(·, t)||L∞(Ω) → 0 as t→∞. (53)

Observe that under restriction (37), the stability of (u∗, v∗) and (0, 0) in the
case (I.c), the ODE analysis doesn’t give us more information about the
problem (7).

Since

µ̃i(t) −→ µi for i = 1, 2

the solution of the non-autonomous system converges to one of the equilibrium
solutions of the autonomous system defined in Theorem 3.2 as a consequence of
(10). The equilibrium solution where the solution converges is determined by the
sign of the following limits

lim
t→∞

(µ̃1Mµ2 − µ1a1µ̃2L) , lim
t→∞

(µ̃2Lµ1 − a2µ2µ̃1M )

which coincide with the signs of 1− a1 and 1− a2, respectively. �
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3.2. Problem 2. In this subsection we consider a system that describes the evo-
lution of a cooperative system of two biological species (u, v) which satisfy

ut = d1∆ur1 − χ1∇(u∇w)− au+
∫

Ω
|v|p, x ∈ Ω, t > 0,

vt = d2∆vr2 − χ2∇(v∇w)− bv +
∫

Ω
|u|q, x ∈ Ω, t > 0,

−∆w + λw = u+ v x ∈ Ω, t > 0,

(54)

with Neumann boundary conditions

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0, x ∈ ∂Ω, t > 0, (55)

where Ω ⊂ IRn is a bounded domain with smooth boundary such that |Ω| = 1 and

a > 0, b > 0, r1 ≥ 1, r2 ≥ 1, p ≥ 1 and q ≥ 1.

The problem, where χ1 = χ2 = 0 has been studied by several authors (see for
instance [12], [13] and [17] and reference therein) where the critical exponents and
blow-up rate of solutions are given. In [17] is proved a result concerning the local
existence of solutions that are extended to a maximal interval of existence (0, Tmax)
such that

lim
t→Tmax

‖u‖L∞(Ω) + ‖v‖L∞(Ω) + Tmax =∞.

We consider the asymptotic behaviour of the solutions by using the comparison
method presented in Section 2 for positive parameters χ1 and χ2. We also provide
results on the stability of steady states. Since nonlinear diffusion coefficients are
not considered in Section 2 we can not directly apply Theorem 2.1 to (54)-(55) for
r1 > 1 or r2 > 1. Nevertheless, it is possible to use a similar argument for the
particular case of spatially homogeneous sub- and super- solution u, v, u and v.
Notice that the nonlocal term is not considered neither in Theorem 2.1.

The problem can be expressed as follows
ut = d1∆ur1 − χ1∇u · ∇w + χ1u(u+ v − λw)− au+

∫
Ω
|v|p, x ∈ Ω, t > 0,

vt = d2∆vr2 − χ2∇v · ∇w + χ2u(u+ v − λw)− bv +
∫

Ω
|u|q, x ∈ Ω, t > 0,

−∆w + λw = u+ v x ∈ Ω, t > 0.
(56)

In order to study the stability of the system, we first introduce the next lemma.

Lemma 3.3. Under assumptions (11), (12), there exists Tmax > 0 such that the
unique solution to the problem (54)-(55) satisfies

u(x, t), v(x, t) > 0, in x ∈ Ω, t < T

where Tmax satisfies

lim
t→Tmax

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + t =∞.

Proof. The existence of solutions follows a fixed point argument for the decoupled
problem. Let us consider the set A, as the functions (ψ1, ψ2) ∈ [Cα,

α
2 (ΩT )]2 satis-

fying

e−(|a|+|b|)t min

{
inf
x∈Ω

u0, inf
x∈Ω

v0

}
≤ ψi ≤ 2 max

{
sup
x∈Ω

u0, sup
x∈Ω

v0

}
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and let J : A→ [Cα,
α
2 (ΩT )]2 be given by J(ũ, ṽ) = (u, v) where (u, v) is the solution

to the problem
ut = d1r1∇ · ũr1−1∇u− χ1∇u∇w − au+

∫
Ω
|ṽ|p + χ1u(ũ+ ṽ − λw), in ΩT ,

vt = d2r2∇ · ṽr2−1∇v − χ2∇v∇w − bv +
∫

Ω
|ũ|q + χ2v(ũ+ ṽ − λw), in ΩT ,

∂u

∂ν
=
∂v

∂ν
= 0,

where w satisfies

−∆w + λw = ũ+ ṽ in ΩT ,

with Neumann boundary conditions. Linear PDEs Theory (see [11] Remark 48.3
(ii) page 439) gives us the existence and uniqueness of solutions in

[Lp(0, T : W 2,p(Ω)) ∩W 1,p(0, T : Lp(Ω))]2 ⊂W 1,p(ΩT )2, for some p > n.

For T small enough we have that the solution remains in A. Since [W 1,p(ΩT )]2 ↪→
[Cα,

α
2 (ΩT )]2 is a compact embedding, a Schauder fixed point Theorem allows us to

obtain the existence of solutions in ΩT for T small enough. Uniqueness is a conse-
quence of the monotonicity of the differential operators, Lemma 3.3 and assumption
p, q ≥ 1. We now may extend the solution to a maximal interval (0, Tmax) where
the solution remains bounded and positive, since (e−kt infx∈Ω u0, e

−kt infx∈Ω v0) is a
sub-solution to the problem (for some k := k(u0, v0, a, b)) we have that the solution
remains positive and Tmax satisfies

lim
t→Tmax

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω) + Tmax =∞.

Remark 2. Notice that

u, v ∈ Lp(0, T : W 2,p(Ω)) ∩W 1,p(0, T : Lp(Ω))]2 ⊂ Cα,α2 (ΩTmax).

In order to apply a comparison method, we introduce the following system of
equations

u′ = −au+ vp + χ1u(u+ v − u− v), t > 0, (57)

u′ = −au+ vp + χ1u(u+ v − u− v) t > 0, (58)

v′ = −bv + uq + χ2v(u+ v − u− v), t > 0, (59)

v′ = −bv + uq + χ2v(u+ v − u− v), t > 0. (60)

Notice that the solutions of the system are non negative provided the initial data
u0, u0, v0 and v0 are non negative.

Theorem 3.4. The unique solution to (54)-(55) satisfies

u ≤ u ≤ u, v ≤ v ≤ v, (x, t) ∈ Ω× (0, Tmax), (61)

where u, u, v and v are the solutions to (57)-(60) and Tmax is the maximum time
of existence.

Proof. The proof is similar to the proof of Theorem 2.1 except for the step 1, which
is replaced by Lemma 3.3, and the treatment of the following integrals:

−
∫

Ω

U+∆ur1 = −r1

∫
Ω

U+div(ur1−1∇u) = r1

∫
Ω

ur1−1|∇U+|2 ≥ 0.
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In the same way we have∫
Ω

U−∆ur1 = r1

∫
Ω

ur1−1|∇U−|2 ≥ 0,

−
∫

Ω

V +∆vr2 = r2

∫
Ω

vr2−1|∇V +|2 ≥ 0

and ∫
Ω

V −∆vr2 = r2

∫
Ω

vr2−1|∇V −|2 ≥ 0.

The nonlocal terms are treated as follows: since u and u are non-negative, we have
that, by Mean Value Theorem, up − up = pξp−1(u − u) for some positive function
ξ. Notice that ξ is a bounded function for any t < Tmax. Therefore

U+

∫
Ω

(vp − vp) = U+

∫
Ω

pξp−1(v − v) ≤ U+

∫
Ω

pξp−1V + ≤ c(ξ,Ω)U+‖V +‖L1(Ω)

and ∫
Ω

(
U+

∫
Ω

(vp − vp)
)
≤ c(ξ,Ω)‖U+‖L1(Ω)‖V +‖L1(Ω)

≤ c2(ξ1,Ω)
(
‖U+‖2L2(Ω) + ‖V +‖2L2(Ω)

)
.

In the same way we have

−
∫

Ω

(
U−

∫
Ω

(vp − vp)
)
≤
∫

Ω

(
U−

∫
Ω

pξp−1
2 (v − v)−

)
≤

c2(ξ2,Ω)‖U−‖L1(Ω)‖V −‖L1(Ω) ≤ c2(ξ2,Ω)
(
‖U−‖2L2(Ω) + ‖V −‖2L2(Ω)

)
and ∫

Ω

(
V +

∫
Ω

(uq − uq)
)
≤ c3(ξ3,Ω)

(
‖U+‖2L2(Ω) + ‖V +‖2L2(Ω)

)
,

−
∫

Ω

(
V −

∫
Ω

(uq − uq)
)
≤ c4(ξ4,Ω)

(
‖U−‖2L2(Ω) + ‖V −‖2L2(Ω)

)
.

The rest of the proof follows the proof of Theorem 2.1.

We now consider different cases, depending on the values of χi. For completeness
of the proof we also include the non-chemotactic case χ1 = χ2 = 0.
Case I. χ1 = χ2 = 0.

In that case the system (57) and (59) contains two positive steady states if

p+ q > 2 (62)

defined by

(0, 0), and (u∗, v∗) :=
(
a

1
pq−1 b

p
pq−1 , a

q
pq−1 b

1
pq−1

)
.

Lemma 3.5. We have the following

a.- If p = q = 1 and ab > 1, any solution satisfies

lim
t→∞

(u, v) = (0, 0).

b.- If p ≥ 1 and q ≥ 1, under assumption (62):
b1.- There exists a solution (u1, v1) such that

limt→∞(u1, v1) = (0, 0), limt→−∞(u1, v1) = (u∗, v∗),

u′1 < 0 and v′1 < 0 for t ∈ IR.
(63)
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b2.- There exists a solution (u2, v2) such that

limt→−∞(u2, v2) = (u∗, v∗), limt→T (u2, v2) = (∞,∞),

u′2 > 0 and v′2 > 0 for t < T,
(64)

for some T ≤ ∞.

Proof. For the case (a) we have a linear system where (0, 0) is the steady state
and both eigenvalues are negative as a consequence of ab > 1. Therefore (0, 0) is
asymptotically stable which proves (a).

For the second case there exists two steady states (0, 0) and (u∗, v∗). We consider
the regions

A1 := {(u, v) ∈ IR2 such that − au+ vp ≤ 0, −bv + uq ≤ 0, u ≤ u∗ and v ≤ v∗},

A2 := {(u, v) ∈ IR2 such that − au+ vp ≥ 0, −bv + uq ≥ 0, u ≥ u∗ and v ≥ v∗}.
Notice that

• A1 contains both steady states,
• u′ < 0 and v′ < 0 in the interior of A1,
• (u′, v′) · ν < 0 in ∂A1 except for (0, 0) and (u∗, v∗). Where ν is the exterior

unit normal vector to A1.

Since there is not any steady state or periodic solution in the interior of A1, we
have that there exists a solution (u1, v1) satisfying (63).

In the same way, thanks to (u′, v′) · ν < 0 in ∂A2 (except in the critical point
(u∗, v∗)) and u′ > 0 and v′ > 0 in the interior of A2 we obtain that there exists a
solution (u2, v2) such that

lim
t→−∞

(u2, v2) = (u∗, v∗), lim
t→T
|u2|+ |v2| =∞, (65)

for some T ≤ ∞. If

lim
t→T

u2(t) <∞ or lim
t→T

v2(t) <∞

occurs, we have that u2 and v2 are uniformly bounded in (0, T ) which contradicts
(65) and proves (64).

Case II. χ1 + χ2 > 0

Lemma 3.6. Let p, q ≥ 1 and a, b > 0, such that there exists s∗ ≤ 1 and

−min{a, b}s+ smin{p,q} + 2 max{χ1, χ2}s2 < 0 (66)

for any s < s∗, we have that for 0 ≤ u0 + v0 < s∗ the solution (u, v) to the problem
satisfies

(u, v)→ (0, 0) as t→∞.

Proof. Notice that, since the solutions are positive, the solutions (u1, v1) to the
following system are upper bounds of the solutions to (57)-(60).

u′1 = −au1 + vp1 + χ1u1(u1 + v1), t > 0, (67)

v′1 = −bv1 + uq1 + χ2v1(u1 + v1), t > 0. (68)

We add the above expressions to obtain

u′1 + v′1 ≤ −min{a, b}(u1 + v1) + (u1 + v1)min{p,q} + 2 max{χ1, χ2}(u1 + v1)2,
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since the solution w to the equation

w′ = −min{a, b}w + wmin{p,q} + 2 max{χ1, χ2}w2,

0 < w(0) < s∗

satisfies

lim
t→∞

w = 0

we have, by Maximum Principle that

lim
t→∞

u1 = lim
t→∞

v1 = 0

and therefore

lim
t→∞

u = lim
t→∞

v = 0

if

u0 + v0 < s∗.

Now we formulate a comparison result similar to Theorem 2.1:

Theorem 3.7. • Case I, χ1 = χ2 = 0
i- If p = q = 1 and ab > 1 the solution to (54)-(55) satisfies

lim
t→∞

‖u‖L∞(Ω) + ‖v‖L∞(Ω) = 0

for any positive and bounded initial data.
ii1- If p ≥ 1 and q ≥ 1 and (62) is satisfied, we have that the solution to

(54)-(55) satisfies

‖u‖L∞(Ω) + ‖v‖L∞(Ω) −→ 0 as t→∞,

if the non negative initial data satisfy

sup
Ω
u0 < u∗ and sup

Ω
v0 < v∗. (69)

ii2- If p ≥ 1 and q ≥ 1 and (62) is satisfied, then, the solution to (54)-(55)
satisfies

‖u‖L∞(Ω) + ‖v‖L∞(Ω) −→∞ as t→ T,

for some T ≤ ∞, if the initial data satisfy

inf
Ω
u0 > u∗ and inf

Ω
v0 > v∗. (70)

• Case II. χ1 + χ2 > 0 if either
IIi- If p, q > 1, a, b > 0

or
IIii- If min{p, q} = 1 and min{a, b} > 1,
then, for any initial data (u0, v0) satisfying

‖u0‖L∞ + ‖v0‖L∞ < s∗

(for s∗ defined in Lemma 3.6) we have that

‖u‖L∞(Ω) + ‖v‖L∞(Ω) −→ 0 as t→∞.
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Proof. The proof of “i” is a direct consequence of Theorem 3.4 and Lemma 3.5-(a)
provided the initial data (u0, v0) satisfy

u0 < u0 < u0, v0 < v0 < u0.

For the case ii1, the assumption (69) implies that there exists bounded initial data
(u0, v0) which belong to the trajectory (u1, v1) and satisfy u0 ≤ u0 and v0 ≤ v0.
Thanks to Theorem 3.4 and Lemma 3.5-(b1) we conclude ii1.

If (70) is verified, we take initial data (u0, v0) in the trajectory (u2, v2) such that
u0 ≥ u0, and v0 ≥ v0. We apply Theorem 3.4 and Lemma 3.5-(b2) to obtain ii2.

The proof of case II is based in a comparison argument for the system of ODEs.
We consider initial data (u0, u0, v0, v0) such that

u0 + v0 < s∗,

for s∗ defined in Lemma 3.6. Since assumption (66) is satisfied for the cases IIi and
IIii we apply Lemma 3.6 and Theorem 3.4 to end the proof.
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