ON A COMPARISON METHOD TO REACTION-DIFFUSION SYSTEMS AND ITS APPLICATIONS TO CHEMOTAXIS

Mihaela Negreanu
Departamento de Matemática Aplicada
Universidad Complutense de Madrid 28040 Madrid, Spain
J. Ignacio Tello
Departamento de Matemática Aplicada, ETSI SI
Universidad Politécnica de Madrid
28031 Madrid, Spain

Abstract

In this paper we consider a general system of reaction-diffusion equations and introduce a comparison method to obtain qualitative properties of its solutions. The comparison method is applied to study the stability of homogeneous steady states and the asymptotic behavior of the solutions of different systems with a chemotactic term. The theoretical results obtained are slightly modified to be applied to the problems where the systems are coupled in the differentiated terms and / or contain nonlocal terms. We obtain results concerning the global stability of the steady states by comparison with solutions of Ordinary Differential Equations.

1. Introduction. In this paper we apply a comparison method to parabolic systems in order to study the stability of homogeneous steady states and the asymptotic behavior of the solutions of different problems. Comparison methods based on upper and lower solutions have been applied to a large number of reaction-diffusion systems as the extensive literature shows (see for instance [10] and reference therein). Comparison method based on ODE's systems have already used in the last decades, see for instance [7], [15] and [8] for chemotactic systems of two PDE's and extended to parabolic-parabolic-elliptic chemotactic systems in [16], [9] and [14]. We study a reaction-diffusion parabolic system "weakly coupled" (i.e. the system is coupled only in the terms which are not differentiated) in a bounded domain $\Omega \subset \mathbb{R}^{n}$ with regular boundary $\partial \Omega$. We denote by Ω_{T} the set defined by $(x, t) \in \Omega \times(0, T)$ and consider the problem

$$
\begin{array}{ll}
u_{t}-\mathcal{L}(u)=g(u), & (x, t) \in \Omega_{T}, \\
\mathcal{B} u=0, & (x, t) \in \partial \Omega \times(0, T), \tag{1}\\
u=u_{0}, & x \in \Omega,
\end{array}
$$

[^0]with $u:=\left(u_{1}, \ldots, u_{m}\right), \mathcal{L}:=\left(\mathcal{L}_{1}, \ldots, \mathcal{L}_{m}\right) . \mathcal{L}_{i}$ is a second-order linear elliptic differential operator of the form
$$
\mathcal{L}_{i}\left(u_{i}\right):=\sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}} a_{j k}^{i}(x, t) \frac{\partial}{\partial x_{k}} u_{i}-\sum_{j=1}^{n} b_{j}^{i}(x, t) \frac{\partial}{\partial x_{j}} u_{i}-c^{i}(x, t) u_{i}
$$
with measurable coefficients $a_{j k}^{i}, b^{i}:=\left(b_{1}^{i}, \ldots, b_{n}^{i}\right)$ and c^{i}, satisfying the ellipticity condition
\[

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}^{i}(x, t) \xi_{j} \xi_{k} \geq \Lambda|\xi|^{2} \quad \text { for some } \Lambda>0 \text { and } \xi \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
a_{j k}^{i} \in C\left(\bar{\Omega}_{T}\right) ; \quad\left|a_{j k}^{i}\right|,\left|b_{j}^{i}\right|,\left|c^{i}\right|<\Lambda_{1} \quad \text { for some } \Lambda_{1}>0 . \tag{3}
\end{equation*}
$$

The second equation in (1) gives the boundary conditions where the operator $\mathcal{B}=$ $\left(\mathcal{B}_{1}, \ldots, \mathcal{B}_{m}\right)$ is defined by

$$
\mathcal{B}_{i}(u):=\left(A^{i} \nabla u_{i}\right) \cdot \nu \quad \text { where } \quad A^{i}:=\left(a_{j k}^{i}(x, t)\right)_{j, k=1 \ldots n}
$$

and ν is the exterior unit normal on $\partial \Omega$. We assume that
g is Loc. Lipschitz continuous in u and Hölder continuous in x and t.
and the initial data

$$
\begin{equation*}
u_{0} \in\left(W^{2, p}(\Omega)\right)^{m} \quad \text { for } \quad p>n \tag{5}
\end{equation*}
$$

satisfies the boundary condition.
If there exist functions $\bar{u}:=\left(\bar{u}_{1}, \ldots, \bar{u}_{m}\right)$ and $\underline{u}:=\left(\underline{u}_{1}, \ldots, \underline{u}_{m}\right)$ such that

$$
\bar{u}, \underline{u} \in\left[L^{p}\left(0, T: W^{2, p}(\Omega)\right) \cap W^{1, p}\left(0, T: L^{p}(\Omega)\right)\right]^{m}
$$

for some $p>n$, satisfying the following system of $2 m$ - parabolic inequalities

$$
\begin{align*}
& \frac{\partial}{\partial t} \bar{u}_{i}-\mathcal{L}_{i}\left(\bar{u}_{i}\right) \geq \quad \underset{\substack{\underline{u}_{j} \leq u_{j} \leq \bar{u}_{j} \text { for } j \neq i \\
u_{i}=\bar{u}_{i}}}{\operatorname{maximum}} g_{i}(u), \quad(x, t) \in \Omega_{T}, \\
& \mathcal{B}_{i} \bar{u}_{i} \geq 0 \quad(x, t) \in \partial \Omega \times(0, T), \\
& \frac{\partial}{\partial t} \underline{u}_{i}-\mathcal{L}_{i}\left(\underline{u}_{i}\right) \leq \quad \operatorname{minimum~}_{\substack{\underline{u}_{j} \leq u_{j} \leq \bar{u}_{j} \text { for } j \neq i \\
u_{i}=\underline{u}_{i} \\
\mathcal{B}_{i}}} g_{i}(u), \quad(x, t) \in \Omega_{T}, \tag{6}\\
& \mathcal{B}_{i} \leq 0, \quad(x, t) \in \partial \Omega \times(0, T), \\
& \underline{u_{i}}(x, 0) \leq u_{i}(x, 0) \leq \overline{u_{i}}(x, 0), \quad x \in \Omega,
\end{align*}
$$

then, there exists at least one solution to the problem, satisfying

$$
\underline{u}_{i} \leq u_{i} \leq \bar{u}_{i}, \quad \text { for } i=1, \ldots, m
$$

A similar comparison method for regular coefficients can be found in [10]. For cooperative systems, i.e., under assumptions

$$
\frac{\partial g_{i}}{\partial u_{j}} \geq 0 \quad \text { for } \quad i \neq j
$$

the solutions have also the property of order preserving, i.e., if

$$
u_{i}(0, x) \leq v_{i}(0, x) \quad \text { for } \quad x \in \Omega
$$

then

$$
u_{i}(t, x) \leq v_{i}(t, x)
$$

for the maximal interval of existence, see for instance [11]. The order preserving property is not satisfied for general nonlinear systems of parabolic equations.

In this work we apply a comparison method to two different systems of partial differential equations arising from biological processes. The results in the literature can not be applied directly to the problems since the equations are coupled in the differentiated terms or contain nonlocal expressions.

- The first problem we study is the asymptotic stability of homogeneous steady state of a two competitive populations of biological species, both of which are attracted chemotactically by the same signaling substance. The chemical is introduced by a forcing term f and it is decoupled from the two previous equations.

$$
\left\{\begin{array}{lc}
u_{t}+A_{1}(u)=-\chi_{1} \nabla \cdot(u \nabla w)+\mu_{1} u\left(1-u-a_{1} v\right), & x \in \Omega, t>0 \tag{7}\\
v_{t}+A_{2}(v)=-\chi_{2} \nabla \cdot(v \nabla w)+\mu_{2} v\left(1-a_{2} u-v\right), & x \in \Omega, t>0 \\
-\Delta w+\lambda w=f(x, t), \quad x \in \Omega, t>0, &
\end{array}\right.
$$

where μ_{1} and μ_{2} represent the growth rates of species u and v; the terms $-\mu_{1} u^{2}$ and $-\mu_{1} v^{2}$ represent the inhibition effects that u and v have on the growth of u and v, respectively; the term $-\mu_{1} a_{1} u v$ measures the influence of v on the growth of u; and $-\mu_{2} a_{2} v u$ the inhibiting effect of u on the growth of v. In (7) A_{i} (for $i=1,2$) are second order differential operator of Leray-Lions type (see [6]) defined by

$$
A_{1} u:=-\sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}} a_{j k}^{1}(x, u, \nabla u) \frac{\partial u}{\partial x_{k}}, A_{2} v:=-\sum_{j, k=1}^{n} \frac{\partial}{\partial x_{j}} a_{j k}^{2}(x, v, \nabla v) \frac{\partial u}{\partial x_{k}}
$$

satisfying
H1. $A_{1}: V_{1} \rightarrow V_{1}^{\prime}$ and $A_{2}: V_{2} \rightarrow V_{2}^{\prime}$ are continuous for $V_{1}:=W^{1, p}(\Omega)$ and $V_{2}:=W^{1, q}(\Omega)$.
H2. There exists $C>0$ such that $\left\|A_{1} u\right\|_{V_{1}^{\prime}} \leq C\|u\|_{V_{1}}$ and $\left\|A_{2} v\right\|_{V_{2}^{\prime}} \leq C\|v\|_{V_{2}}$ for $u \in V_{1}, v \in V_{2}$.
H 3 . A_{i} (for $i=1,2$) are strongly monotone in the following interpolation sense: there exist $\theta_{i} \in(0,1]$ and $c>0$ such that for all $\phi_{1}, \phi_{2} \in V_{i}$ we have

$$
c\left\|\phi_{1}-\phi_{2}\right\|_{V_{i}} \leq<A_{i} \phi_{1}-A_{i} \phi_{2}, \phi_{1}-\phi_{2}>^{\theta_{i}}\left(\left\|\phi_{1}\right\|_{V_{i}}+\left\|\phi_{2}\right\|_{V_{i}}\right)^{1-\theta_{i}} .
$$

H4. $<A_{i} \phi_{1}-A_{i} \phi_{2}, \phi_{1}-\phi_{2}>\geq 0$ for all $\phi_{1}, \phi_{2} \in V_{i}(i=1,2)$.
Notice that $A_{1}=\Delta_{p}$ and $A_{2}=\Delta_{q}$ satisfy (H1)-(H4).
We consider the following boundary conditions in a bounded and regular domain $\Omega \subset \mathbb{R}^{n}$, for $n \geq 1$

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}^{1} \frac{\partial u}{\partial x_{k}} \nu_{j}=\sum_{j, k=1}^{n} a_{j k}^{2} \frac{\partial v}{\partial x_{k}} \nu_{j}=\sum_{j=1}^{n} \frac{\partial w}{\partial j} \nu_{j}=0, \quad x \in \partial \Omega, t>0 \tag{8}
\end{equation*}
$$

and initial data

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), \quad x \in \Omega \tag{9}
\end{equation*}
$$

satisfying (8). We also assume that $f \in C_{x, t}^{\alpha, 1+\beta}(\bar{\Omega} \times[0, T]), f$ is uniformly bounded and satisfies

$$
\begin{equation*}
\left\|f-\frac{1}{|\Omega|} \int_{\Omega} f\right\|_{L^{\infty}(\Omega)} \rightarrow 0, \quad \text { as } \quad t \rightarrow \infty \tag{10}
\end{equation*}
$$

The problem (7) is considered as a first step to study the control problem, i.e. to find f in a suitable space such that the solutions have a desired behavior. The system with constant diffusion coefficients where w satisfies the linear elliptic equation

$$
-\Delta w+\lambda w=k_{1} u+k_{2} v, \quad x \in \Omega, t>0
$$

have been already analyzed in [16] for a range of parameters, see also [9].

- The second application considers a degenerate reaction-diffusion system with nonlocal sources modelling a cooperative system of two biological species. We consider the unknown densities " u " and " v " satisfying the system

$$
\left\{\begin{array}{l}
u_{t}=\Delta u^{r_{1}}-\chi_{1} \nabla(u \nabla w)-a u+\int_{\Omega}|v|^{p}, \quad x \in \Omega, t>0 \\
v_{t}=\Delta v^{r_{2}}-\chi_{2} \nabla(v \nabla w)-b v+\int_{\Omega}|u|^{q}, \quad x \in \Omega, t>0 \\
-\Delta w+\lambda w=u+v, \quad x \in \Omega
\end{array}\right.
$$

with Neumann boundary conditions

$$
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=\frac{\partial w}{\partial n}=0, \quad x \in \partial \Omega, \quad t>0
$$

for $r_{1}, r_{2} \geq 1, p, q, a, b>0$ and $|\Omega|=1$. We obtain results on the asymptotic behavior and blow-up for some range of initial data and parameters. The system for $\chi_{1}=\chi_{2}=0$ has been also used to model the temperature of two substances in a combustible mixture (see for instance [12], [13] or [17] and reference therein).

We assume that the initial data satisfy

$$
\begin{equation*}
u_{0}, v_{0} \in C_{x}^{2+\alpha}(\Omega) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{0}, v_{0}>0 \quad \text { in } \quad \bar{\Omega}, \quad \frac{\partial u_{0}}{\partial \nu}=\frac{\partial v_{0}}{\partial \nu}=0 \quad \text { in } \quad \partial \Omega \tag{12}
\end{equation*}
$$

In order to study the mentioned problems above, we first analyze the weakly coupled general system. For the completeness of the result, we detail the comparison method for the problem (1) in Section 2. These results can not be applied directly to the problems studied in Section 3 due to the nonlocal terms or nonlinear diffusion coefficient that we treat separately.
2. Comparison method. In this section we study the comparison method for the problem (1) employing Schauder's fixed point theorem. We assume that there exists $T>0$ such that the solutions of problem (6) exist in $(0, T)$.

The main purpose of this section is the following theorem:
Theorem 2.1. Under hypothesis (2)-(5), if the initial data satisfy

$$
\begin{equation*}
\underline{u}_{i}(x, 0) \leq u_{i}(x, 0) \leq \bar{u}_{i}(x, 0) \tag{13}
\end{equation*}
$$

the unique solution of (1) fulfills

$$
\begin{equation*}
\underline{u}_{i} \leq u_{i} \leq \bar{u}_{i}, \quad \text { for } i=1 \ldots m \tag{14}
\end{equation*}
$$

where \underline{u}_{i} and \bar{u}_{i} satisfy (6).

Proof. Let A be defined as follows:

$$
A:=\left\{u \in\left[C^{0}\left(\Omega_{T}\right)\right]^{m} \text { such that } \underline{u}_{i} \leq u_{i} \leq \bar{u}_{i}, \quad \text { for } i=1 \ldots m\right\}
$$

Notice that A is a bounded set in $\left[C^{0}\left(\Omega_{T}\right)\right]^{m}$. Let $J: A \rightarrow A$ be defined by

$$
J(\tilde{u})=u
$$

where u is the solution to the problem

$$
\left\{\begin{array}{l}
u_{t}-\mathcal{L}(u)=\tilde{g}(u), \quad(x, t) \in \Omega_{T} \tag{15}\\
\mathcal{B} u=0, \quad(x, t) \in \partial \Omega \times(0, T)
\end{array}\right.
$$

with $\tilde{g}(u):=\left(\tilde{g}_{1}(u), \ldots, \tilde{g}_{m}(u)\right)$ for

$$
\tilde{g}_{i}(u)=g_{i}\left(\tilde{u}_{1}, \ldots, \tilde{u}_{i-1}, u_{i}, \tilde{u}_{i+1}, \ldots, \tilde{u}_{m}\right)
$$

For simplicity, in order to prove that J has a fixed point, we divide the proof into several steps.
Step 1. We see first that J is well defined for T small enough.
We linearize the problem and apply a fixed point argument to prove the existence and uniqueness of solution of (15). Due to parabolic regularity and assumptions $(2),(3)$ and (5) the solution to the linear decoupled problem belongs to

$$
\left[L^{p}\left(0, T: W^{2, p}(\Omega)\right) \cap W^{1, p}\left(0, T: L^{p}(\Omega)\right)\right]^{m}
$$

for some $p>n$ (see Remark 48.3 in [11]). Thanks to (4) we obtain using a fixed point method that

$$
u \in\left[L^{p}\left(0, T: W^{2, p}(\Omega)\right) \cap W^{1, p}\left(0, T: L^{p}(\Omega)\right)\right]^{m}
$$

which implies

$$
u \in\left[C^{0}\left(\Omega_{T}\right)\right]^{m}, \quad \text { for } T \text { small enough. }
$$

Step 2. $u \in A$.
We denote by

$$
\begin{aligned}
& \bar{U}_{i}(x, t):=u_{i}(x, t)-\bar{u}_{i}(x, t), \quad \underline{U}_{i}(x, t):=u_{i}(x, t)-\underline{u}_{i}(x, t), \\
& \bar{g}_{i}:=\underset{\substack{\underline{u}_{j} \leq u_{j} \leq \bar{u}_{j} \text { for } j \neq i \\
u_{i}=\bar{u}_{i}}}{\operatorname{maximum}} g_{i}(u), \underline{g}_{i}:=\underset{\substack{\underline{u}_{j} \leq u_{j} \leq \bar{u}_{j} \text { for } j \neq i \\
u_{i}=\underline{u}_{i}}}{\operatorname{minimum}} g_{i}(u), \text { for } t>0,
\end{aligned}
$$

and the standard positive and negative part functions:

$$
(s)_{+}=\left\{\begin{array}{l}
s \text { if } s \geq 0, \\
0 \text { otherwise }
\end{array} \quad(s)_{-}=(-s)_{+}\right.
$$

With these notations, resting (6) and (1), we obtain the following PDE system

$$
\begin{align*}
& \frac{\partial}{\partial t} \bar{U}_{i}-\mathcal{L}_{i} \bar{U}_{i} \leq \tilde{g}_{i}(u)-\bar{g}_{i} \tag{16}\\
& \frac{\partial}{\partial t} \underline{U}_{i}-\mathcal{L}_{i} \underline{U}_{i} \geq \tilde{g}_{i}(u)-\underline{g}_{i} \tag{17}\\
& \mathcal{B}_{i} \bar{U}_{i} \leq 0 \tag{18}\\
& \mathcal{B}_{i} \underline{U}_{i} \geq 0 \tag{19}\\
& \underline{U}_{i}(x, 0)=u_{i}(x, 0)-\underline{u}_{i}(x, 0), \quad \bar{U}_{i}(x, 0)=u_{i}(x, 0)-\bar{u}_{i}(x, 0) \tag{20}
\end{align*}
$$

We take $\left(\bar{U}_{i}\right)_{+}$as test function in (16), i.e., we multiply by $\left(\bar{U}_{i}\right)_{+}$and integrate by parts over Ω to obtain, after some computations:

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\bar{U}_{i}\right)_{+}^{2}+\int_{\Omega} \Lambda\left|\nabla\left(\bar{U}_{i}\right)_{+}\right|^{2}+\int_{\Omega} b^{i} \nabla\left(\bar{U}_{i}\right)_{+}\left(\bar{U}_{i}\right)_{+}+\int_{\Omega} c^{i}\left(\bar{U}_{i}\right)_{+}^{2} \leq \\
\int_{\Omega}\left(\tilde{g}_{i}(u)-\bar{g}_{i}\right)\left(\bar{U}_{i}\right)_{+} \tag{21}
\end{gather*}
$$

Thanks to (3), we estimate the third term in the left part of inequality (21) as follows

$$
\int_{\Omega} b^{i}(x, t) \nabla\left(\bar{U}_{i}\right)_{+}\left(\bar{U}_{i}\right)_{+} \leq k_{1} \int_{\Omega}\left(\bar{U}_{i}\right)_{+}^{2}+\frac{\Lambda}{4} \int_{\Omega}\left|\nabla\left(\bar{U}_{i}\right)_{+}\right|^{2} .
$$

In order to simplify the term $\tilde{g}_{i}(u)-\bar{g}_{i}$, we add $\pm g_{i}\left(\tilde{u}_{1}, \ldots, \tilde{u}_{i-1}, \bar{u}_{i}, \tilde{u}_{i+1}, \ldots, \tilde{u}_{m}\right)$, i.e., $\tilde{g}_{i}(u)-\bar{g}_{i}=$

$$
\tilde{g}_{i}(u)-g_{i}\left(\tilde{u}_{1}, \ldots, \tilde{u}_{i-1}, \bar{u}_{i}, \tilde{u}_{i+1}, \ldots, \tilde{u}_{m}\right)+g_{i}\left(\tilde{u}_{1}, \ldots, \tilde{u}_{i-1}, \bar{u}_{i}, \tilde{u}_{i+1}, \ldots, \tilde{u}_{m}\right)-\bar{g}_{i} .
$$

Thanks to the definition of \bar{g}_{i} it follows

$$
g_{i}\left(\tilde{u}_{1}, \ldots, \tilde{u}_{i-1}, \bar{u}_{i}, \tilde{u}_{i+1}, \ldots, \tilde{u}_{m}\right)-\bar{g}_{i} \leq 0
$$

and by Mean Value Theorem

$$
\tilde{g}_{i}(u)-\bar{g}_{i} \leq\left.\frac{\partial}{\partial u_{i}} \tilde{g}_{i}(u)\right|_{u_{i}=\xi} \bar{U}_{i}
$$

for some $\xi \in\left(\bar{u}_{i}, u_{i}\right) \cup\left(u_{i}, \bar{u}_{i}\right)$. By assumption (4) we have

$$
\int_{\Omega}\left(\tilde{g}_{i}(u)-\bar{g}_{i}\right)\left(\bar{U}_{i}\right)_{+} \leq k_{i} \int_{\Omega}(\bar{U})_{+}^{2}
$$

Therefore, from (21) it follows

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\bar{U}_{i}\right)_{+}^{2}+\frac{\Lambda}{4} \int_{\Omega}\left|\nabla\left(\bar{U}_{i}\right)_{+}\right|^{2} \leq k_{i} \int_{\Omega}\left(\bar{U}_{i}\right)_{+}^{2} \tag{22}
\end{equation*}
$$

for $t \in(0, T)$.
In the same fashion as before we multiply equation (17) by $\left(\underline{U}_{i}\right)_{-}$to derive, using similar computations as those in (21), the inequality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\underline{U}_{i}\right)_{-}^{2}+\frac{\Lambda}{4} \int_{\Omega}\left|\nabla\left(\bar{U}_{i}\right)_{-}\right|^{2} \leq k_{i}^{\prime} \int_{\Omega}\left(\underline{U}_{i}\right)_{-}^{2} \tag{23}
\end{equation*}
$$

Finally, adding (22) and (23) we see that

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \sum_{i=1}^{m}\left(\left(\bar{U}_{i}\right)_{+}^{2}+\left(\underline{U}_{i}\right)_{-}^{2}\right) \leq K \int_{\Omega} \sum_{i=1}^{m}\left(\left(\bar{U}_{i}\right)_{+}^{2}+\left(\underline{U}_{i}\right)_{-}^{2}\right) \tag{24}
\end{equation*}
$$

for all $t \in(0, T)$ and $K=\max _{i=1, \ldots, m}\left\{k_{i}, k_{i}^{\prime}\right\}$. By (13), the initial data satisfy $\left(\bar{U}_{i}\right)_{+}=\left(\underline{U}_{i}\right)_{-}=0$ at $t=0$ and we apply Gronwall's Lemma to achieve

$$
\left(\bar{U}_{i}\right)_{+}=\left(\underline{U}_{i}\right)_{-}=0
$$

which proves $u \in A$ for T small enough. The solution is extended to $\left(0, T_{\max }\right)$, where $\left(0, T_{\max }\right)$ is the maximum interval of definition of \bar{u}_{i} and \underline{u}_{i}.
Step 3. Compactness.
Since $u_{i} \in L^{\infty}\left(0, T: L^{\infty}(\Omega)\right)$ we have that $u_{t}-\mathcal{L} u \in L^{q}\left(0, T: L^{q}(\Omega)\right)$ for any $q<\infty$, by (5) and [11] (Remark 48.3 (ii)) we have that

$$
u_{i} \in Y_{p}:=L^{p}\left(0, T: W^{2, p}(\Omega)\right) \cap H^{1, p}\left(0, T: L^{p}(\Omega)\right)
$$

for some $p>n$. Since $Y_{p} \subset C^{0}((0, T) \times \Omega)$ is a compact embedding for $T<\infty$ and A is a bounded set, we have, by Schauder fixed point theorem that J has at least one fixed point in \bar{A}, the solution to the problem. Uniqueness is a consequence of the regularity of g.

3. Applications.

3.1. Problem 1. First we study a system of type (7), (8) and (9) consisting on three partial differential equations modelling the spatio-temporal behavior of two competitive populations of biological species (u, v), both of which are attracted chemotactically by the same signal substance " w ".

In [16], the authors have considered the case $f=u+v$ and they obtained that, when $0 \leq a_{1}<1$ and $0 \leq a_{2}<1$, the system possesses a uniquely determined spatially homogeneous positive equilibrium $\left(u^{*}, v^{*}\right)$, globally asymptotically stable within a certain nonempty range of the logistic growth coefficients μ_{1} and μ_{2}. In our case the parameters $\lambda, \chi_{1}, \chi_{2}, \mu_{1}$ and μ_{2} are assumed to be positive.

We rewrite system (7) as follows

$$
\begin{cases}u_{t}+A_{1} u=-\chi_{1} \nabla w \cdot \nabla u+\chi_{1} u(f(x, t)-\lambda w)+\mu_{1} u\left(1-u-a_{1} v\right), & \text { in } \Omega_{T}, \\ v_{t}+A_{2} v=-\chi_{2} \nabla w \cdot \nabla v+\chi_{2} v(f(x, t)-\lambda w)+\mu_{2} v\left(1-a_{2} u-v\right), & \text { in } \Omega_{T} \\ -\Delta w+\lambda w=f(x, t), \quad \text { in } \Omega_{T}\end{cases}
$$

where A_{i} satisfy (H1)-(H4).
Remark 1. We consider the following auxiliary problem

$$
u_{t}+A_{1} u=f_{1}, \quad v_{t}+A_{2} v=f_{2} \quad \text { in } \quad \Omega_{T}
$$

with the boundary conditions given by (8) for any $f_{1} \in L^{p}\left(0, T: W^{-1, p}(\Omega)\right)$ and $f_{2} \in L^{q}\left(0, T: W^{-1, q}(\Omega)\right)$. Since A_{i} satisfy assumptions (H1)-(H4) we obtain the existence and uniqueness of solutions $(u, v) \in\left(L^{p}\left(0, T: W^{1, p}(\Omega)\right), L^{q}(0, T\right.$: $\left.W^{1, q}(\Omega)\right)$). The proof is similar to the result in Derlet and Takáč [6] Proposition 2.1, where homogeneous Neumann boundary conditions are considered. An standard fixed point argument in f_{i} gives the existence of weak solutions. Uniqueness of solutions is a consequence of assumption (H4) and regularity of the reaction terms.

Since Theorem 2.1 can not be applied directly to the system due to the differentiated terms, we consider the following lemma.
Lemma 3.1. Under hypothesis (2)-(5) and (H1)-(H4) we have that if there exist $(\bar{u}, \underline{u}),(\bar{v}, \underline{v})$ such that

$$
\begin{cases}\bar{u}_{t}+A_{1} \bar{u} \leq-\chi_{1} \nabla w \cdot \nabla \bar{u}+\chi_{1} \bar{u}(f(x, t)-\lambda w)+\mu_{1} \bar{u}\left(1-\bar{u}-a_{1} \underline{v}\right), & \text { in } \Omega_{T}, \\ \underline{u}_{t}+A_{1} \underline{u} \geq-\chi_{1} \nabla w \cdot \nabla \underline{u}+\chi_{1} \underline{u}(f(x, t)-\lambda w)+\mu_{1} \underline{u}\left(1-\underline{u}-a_{1} \bar{v}\right), & \text { in } \Omega_{T}, \\ \bar{v}_{t}+A_{2} \bar{v} \leq-\chi_{2} \nabla w \cdot \nabla \bar{v}+\chi_{2} \bar{v}(f(x, t)-\lambda w)+\mu_{2} \bar{v}\left(1-a_{2} \underline{u}-\bar{v}\right), & \text { in } \Omega_{T}, \\ \underline{v}_{t}+A_{2} \bar{v} \geq-\chi_{2} \nabla w \cdot \nabla \underline{v}+\chi_{2} \underline{v}(f(x, t)-\lambda w)+\mu_{2} \underline{v}\left(1-a_{2} \bar{u}-\underline{v}\right), & \text { in } \Omega_{T}, \\ -\Delta w+\lambda w=f(x, t), \quad \text { in } \Omega_{T} & \end{cases}
$$

satisfying the boundary conditions (8) and the inequalities

$$
\begin{equation*}
\underline{u}(0) \leq u(x, 0) \leq \bar{u}(0), \quad \underline{v}(0) \leq v(x, 0) \leq \bar{v}(0) \tag{25}
\end{equation*}
$$

then, the unique solution of (7) fulfills

$$
\begin{equation*}
\underline{u} \leq u \leq \bar{u}, \quad \underline{v} \leq v \leq \bar{v} \tag{26}
\end{equation*}
$$

Proof. We denote by

$$
\bar{U}(x, t):=u(x, t)-\bar{u}(t), \quad \underline{U}(x, t):=u(x, t)-\underline{u}(t),
$$

and

$$
\bar{V}(x, t):=v(x, t)-\bar{v}(t), \quad \underline{V}(x, t):=v(x, t)-\underline{v}(t) .
$$

The proof follows the steps of Theorem 2.1 except for the step 1 , which should be replaced by Remark 1. The rest of the proof is similar to Theorem 2.1 except for the differentiated terms which we treat in the following way

$$
\begin{aligned}
<A_{1} u-A_{1} \bar{u},(\bar{U})_{+}>=\int_{\Omega} \sum_{j, k=1}^{n} & a_{j k}^{1}(x, u, \nabla u) \frac{\partial}{\partial x_{j}} \bar{U} \frac{\partial}{\partial x_{k}}(\bar{U})_{+} \geq 0 \\
\int_{\Omega}(\bar{U})_{+} \nabla \bar{U} \cdot \nabla w & =\frac{1}{2} \int_{\Omega} \nabla(\bar{U})_{+}^{2} \cdot \nabla w \\
& =-\frac{1}{2} \int_{\Omega}(\bar{U})_{+}^{2} \Delta w \\
& =\frac{1}{2} \int_{\Omega}(\bar{U})_{+}^{2}(f-\lambda w) \\
& \leq c \int_{\Omega}(\bar{U})_{+}^{2}
\end{aligned}
$$

The rest of the terms

$$
\begin{gathered}
<A_{1} u-A_{1} \underline{u},(\underline{U})_{-}>,<A_{2} v-A_{1} \bar{v},(\bar{V})_{+}>,<A_{2} v-A_{2} \underline{v},(\underline{U})_{-}>, \\
\int_{\Omega}(\underline{U})_{-} \nabla \underline{U} \cdot \nabla w, \quad \int_{\Omega}(\bar{V})_{+} \nabla \bar{V} \cdot \nabla w \quad \text { and } \quad \int_{\Omega}(\underline{V})_{-} \nabla \underline{V} \cdot \nabla w
\end{gathered}
$$

are treated in the same fashion. The rest of the proof reproduces the steps of Theorem 2.1.

The main result of this section is as follows
Theorem 3.2. Let $n \geq 1$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Assume that $\lambda, \chi_{i}, \mu_{i}$ and a_{i} are positive for $i=1,2$ and f satisfies (10). For all positive initial data $u_{0} \in C^{0}(\bar{\Omega})$ and $v_{0} \in C^{0}(\bar{\Omega})$, the solution (u, v) to (7) is bounded and satisfies

$$
\begin{equation*}
\left\|u(\cdot, t)-u^{*}\right\|_{L^{\infty}(\Omega)}+\left\|v(\cdot, t)-v^{*}\right\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{27}
\end{equation*}
$$

where the constant steady $\left(u^{*}, v^{*}\right)$ takes one of the following values

- $\left(u^{*}, v^{*}\right)=\left(\frac{1-a_{1}}{1-a_{1} a_{2}}, \frac{1-a_{2}}{1-a_{1} a_{2}}\right) \quad$ if $0 \leq a_{i}<1, i=1,2$,
- $\left(u^{*}, v^{*}\right)=(1,0)$, if $0 \leq a_{1}<1<a_{2}$,
- $\left(u^{*}, v^{*}\right)=(0,1)$, if $0 \leq a_{2}<1<a_{1}$.

If $1<a_{i}$, for $i=1,2$ and $f=0$, we have that the solution satisfies (27) for $\left(u^{*}, v^{*}\right)$ given by

- $\left(u^{*}, v^{*}\right)=(1,0) \quad$ if $\max _{x \in \Omega} v_{0}<\min _{x \in \Omega} u_{0} \frac{a_{2}-1}{a_{1}-1}$,
- $\left(u^{*}, v^{*}\right)=(0,1) \quad$ if $\min _{x \in \Omega} v_{0}>\max _{x \in \Omega} u_{0} \frac{a_{2}-1}{a_{1}-1}$.

In order to prove the theorem we introduce a system of Ordinary Differential Equations for the upper and lower solutions

$$
\begin{cases}\bar{u}^{\prime}=\bar{u}\left[\mu_{1}-\mu_{1} \bar{u}-\mu_{1} a_{1} \underline{v}+\chi_{1} \sup _{x \in \Omega}\{f(x, t)-\lambda w\}\right], & t>0 \\ \underline{u}^{\prime}=\underline{u}\left[\mu_{1}-\mu_{1} \underline{u}-\mu_{1} a_{1} \bar{v}+\chi_{1} \inf _{x \in \Omega}\{f(x, t)-\lambda w\}\right], & t>0 \\ \bar{v}^{\prime}=\bar{v}\left[\mu_{2}-\mu_{2} a_{2} \underline{u}-\mu_{2} \bar{v}+\chi_{2} \sup _{x \in \Omega}\{f(x, t)-\lambda w\}\right], & t>0 \\ \underline{v}^{\prime}=\underline{v}\left[\mu_{2}-\mu_{2} a_{2} \bar{u}-\mu_{2} \underline{v}+\chi_{2} \inf _{x \in \Omega}\{f(x, t)-\lambda w\}\right], & t>0\end{cases}
$$

with positive initial data $\bar{u}_{0}, \underline{u}_{0}, \bar{v}_{0}$ and \underline{v}_{0}. Following the outline of Theorem 2.1, we analyze the stability of the system. Denoting by

$$
\begin{equation*}
M(t):=\sup _{x \in \Omega}\{f(x, t)-\lambda w(x, t)\}, \quad m(t):=\inf _{x \in \Omega}\{f(x, t)-\lambda w(x, t)\} \tag{28}
\end{equation*}
$$

we observe that the system can be expressed as two independent systems of equations:

$$
\begin{align*}
& \left\{\begin{array}{l}
\bar{u}^{\prime}=\bar{u}\left[\mu_{1}-\mu_{1} \bar{u}-\mu_{1} a_{1} \underline{v}+\chi_{1} M(t)\right] \\
\underline{v}^{\prime}=\underline{v}\left[\mu_{2}-\mu_{2} a_{2} \bar{u}-\mu_{2} \underline{v}+\chi_{2} m(t)\right]
\end{array}\right. \\
& \left\{\begin{array}{l}
\underline{u}^{\prime}=\underline{u}\left[\mu_{1}-\mu_{1} \underline{u}-\mu_{1} a_{1} \bar{v}+\chi_{1} m(t)\right] \\
\bar{v}^{\prime}=\bar{v}\left[\mu_{2}-\mu_{2} a_{2} \underline{u}-\mu_{2} \bar{v}+\chi_{2} M(t)\right]
\end{array}\right. \tag{29}
\end{align*}
$$

We shall study the solutions' properties of the first system in (29). The other one is symmetric and all the results obtained for the first one are valid for the second system.

We analyze (29) taking into account that $M(t) \rightarrow 0$ and $m(t) \rightarrow 0$ as $t \rightarrow \infty$ and we can justify that it is natural to work in this framework. If we denote by

$$
\bar{f}(t)=\sup _{x \in \Omega} f(x, t), \quad \underline{f}(t)=\inf _{x \in \Omega} f(x, t),
$$

by Maximum Principle, in (7), we know that

$$
\begin{equation*}
\underline{f}(t) \leq \lambda w(x, t) \leq \bar{f}(t), \quad \forall x \in \Omega \tag{30}
\end{equation*}
$$

By assumption (10) and taking into account (30), we obtain

$$
\lim _{t \rightarrow \infty}\left\|w-\frac{1}{\lambda|\Omega|} \int_{\Omega} f\right\|_{L^{\infty}(\Omega)}=0
$$

and therefore

$$
\begin{equation*}
M(t):=\sup _{x \in \Omega}\{f(x, t)-\lambda w(x, t)\} \rightarrow 0, m(t):=\inf _{x \in \Omega}\{f(x, t)-\lambda w(x, t)\} \rightarrow 0 \tag{31}
\end{equation*}
$$

Notice that, by integration in $-\Delta w+\lambda w=f$, we have that $\int_{\Omega}(f-\lambda w)=0$, for all $t>0$ and it implies that $M(t) \geq 0$ and $m(t) \leq 0$.

System (29) has been widely studied in the literature. For the autonomous case (i.e. $M(t)=m(t)=0$) Braun in [5] details the asymptotic behavior depending on the parameters. To the author's knowledge, the asymptotic properties of the solutions for the general case of the nonautonomous system (29) have been studied
for the first time by Ahmad in [1] and [4], under certain assumptions for the coefficients, i.e., always assumed to be bounded, continuous and nonnegative. Using only simple arguments based on differential inequalities and standard theorems concerning continuity of solutions of differential equations with respect to initial conditions and parameters, it is possible to find optimal bounds and convergence results for the solutions of (29).

For readers ${ }^{\prime}$ convenience we quote the results in [5], [1] and [4] used in the proof of Theorem 3.2.

- Case I. $M=m=0$.

In this case we have an autonomous system (commonly called an autonomous Lotka Volterra system) as a model of competition between two species

$$
\left\{\begin{array}{l}
u_{1}^{\prime}=u_{1}\left[\mu_{1}-\mu_{1} u_{1}-\mu_{1} a_{1} u_{2}\right], \tag{32}\\
u_{2}^{\prime}=u_{2}\left[\mu_{2}-\mu_{2} a_{2} u_{1}-\mu_{2} u_{2}\right] .
\end{array}\right.
$$

For $M=m=0$, both systems in (29) coincide, and for simplicity, we had denoted their solutions by $\left(u_{1}=\bar{u}=\underline{u}, u_{2}=\underline{v}=\bar{v}\right)$. The equilibrium points of (32) are $(0,0),(1,0),(0,1)$ and

$$
\begin{equation*}
\left(u^{*}, v^{*}\right)=\left(\frac{1-a_{1}}{1-a_{1} a_{2}}, \frac{1-a_{2}}{1-a_{1} a_{2}}\right) . \tag{33}
\end{equation*}
$$

(I.a) In [5] and the references therein, it is proved that a phase plane analysis of this autonomous case shows that the conditions

$$
\begin{equation*}
0 \leq a_{i}<1 \quad \text { for } \quad i=1,2 \tag{34}
\end{equation*}
$$

are necessary and sufficient for the existence of a unique stable equilibrium point $\left(u^{*}, v^{*}\right)$ of system (32) given by (33), such that both components are positive and it globally attracts all solutions with initial values in the open first quadrant of the $\left(u_{1}, u_{2}\right)$ plane.

If (34) fails, then, generally the model either predicts that one of the competitors always becomes extinct while the other persists, or that the outcome of the competition depends on the initial data. Another feature of the system (32) is that if $\left(u_{1}, u_{2}\right)$ is a solution which is nonnegative in both components then the change of variables $\left(v_{1}, v_{2}\right)=\left(u_{1},-u_{2}\right)$ converts (32) to a cooperative system. Cooperative systems are well known to be order preserving so if $\left(u_{1}, u_{2}\right)$ and ($\left.\tilde{u}_{1}, \tilde{u}_{2}\right)$ are nonnegative solutions to (32) with $u_{1}(0) \geq \tilde{u}_{1}(0)$ and $u_{2}(0) \geq \tilde{u}_{2}(0)$ then $u_{1}(t) \geq \tilde{u}_{1}(t)$ and $u_{2}(t) \geq \tilde{u}_{2}(t)$ for all $t>0$.

If conditions (34) fail two different cases occur:
(I.b) Assume that in (32)

$$
\begin{equation*}
0 \leq a_{1}<1<a_{2} \tag{35}
\end{equation*}
$$

Then, any solution $\left(u_{1}(t), u_{2}(t)\right)$ of (32) with $u_{1}\left(t_{0}\right)>0, u_{2}\left(t_{0}\right)>0$ for some $t_{0}>0$, verifies $\left(u_{1}(t), u_{2}(t)\right) \rightarrow(1,0)$, as $t \rightarrow \infty$. This is sometimes referred to as the principle of competitive exclusion. That is, u_{2} approaches zero as t approaches infinity for every solution $\left(u_{1}(t), u_{2}(t)\right)$ of (32) with $u_{1}\left(t_{0}\right)>0$. By symmetry, if we assume that

$$
\begin{equation*}
0 \leq a_{2}<1<a_{1} \tag{36}
\end{equation*}
$$

then $\left(u_{1}(t), u_{2}(t)\right) \rightarrow(0,1)$, as $t \rightarrow \infty$.
(I.c) Assume that

$$
\begin{equation*}
a_{1}>1 \quad \text { and } \quad a_{2}>1 \tag{37}
\end{equation*}
$$

Then,

1. The equilibrium solution $(0,0)$ of (32) is unstable.
2. The equilibrium solutions $(0,1)$ and $(1,0)$ of (32) are locally asymptotically stable.
3. The equilibrium solution $\left(u^{*}, v^{*}\right)$ of (32) defined by (33) is a saddle point.

- Case II. $M(t) \rightarrow 0$ and $m(t) \rightarrow 0$. We consider our problem as a particular case of a Lotka-Volterra system (see a large and complete study of this problem in [1] and [4])

$$
\left\{\begin{array}{l}
u_{1}^{\prime}=u_{1}\left[\tilde{\mu}_{1}(t)-\mu_{1} u_{1}-\mu_{1} a_{1} u_{2}\right], \tag{38}\\
u_{2}^{\prime}=u_{2}\left[\tilde{\mu}_{2}(t)-\mu_{2} a_{2} u_{1}-\mu_{2} u_{2}\right] .
\end{array}\right.
$$

Given a function $g(t)$, which is bounded above and below by positive constants for $t_{0} \leq t<\infty$, we let g_{L} and g_{M} denote $\inf _{t \geq t_{0}} g(t)$ and $\sup _{t \geq t_{0}} g(t)$, respectively. The coefficients in (38) are always assumed to be bounded, continuous, and nonnegative, therefore the solution exists in $(0, \infty)$ and it is uniformly bounded.
(II.a) In [1] it was shown that if the coefficients $\tilde{\mu}_{i}(\cdot)$ are bounded below by positive constants, then, if the inequalities

$$
\begin{equation*}
\tilde{\mu}_{1 L} \mu_{2}>a_{1} \mu_{1} \tilde{\mu}_{2 M} \quad \text { and } \quad \tilde{\mu}_{2 L} \mu_{1}>a_{2} \mu_{2} \tilde{\mu}_{1 M} \tag{39}
\end{equation*}
$$

hold, then there exists a solution $u^{*}(t)=\left(u_{1}^{*}(t), u_{2}^{*}(t)\right)$ such that the inequalities

$$
\begin{align*}
& 0<\frac{\tilde{\mu}_{1 L} \mu_{2}-a_{1} \mu_{1} \tilde{\mu}_{2 M}}{\mu_{1} \mu_{2}-a_{1} a_{2} \mu_{1} \mu_{2}} \equiv s_{1} \leq u_{1}^{*}(t) \leq r_{1} \equiv \frac{\tilde{\mu}_{1 M} \mu_{2}-a_{1} \mu_{1} \tilde{\mu}_{2 L}}{\mu_{1} \mu_{2}-a_{1} a_{2} \mu_{1} \mu_{2}}, \\
& 0<\frac{\mu_{1} \tilde{\mu}_{2 L}-\tilde{\mu}_{1 M} a_{2} \mu_{2}}{\mu_{1} \mu_{2}-a_{1} a_{2} \mu_{1} \mu_{2}} \equiv r_{2} \leq u_{2}^{*}(t) \leq s_{2} \equiv \frac{\mu_{1} \tilde{\mu}_{2 M}-\tilde{\mu}_{1 L} a_{2} \mu_{2}}{\mu_{1} \mu_{2}-a_{1} a_{2} \mu_{1} \mu_{2}} \tag{40}
\end{align*}
$$

hold for $t_{0} \leq t<\infty$. These bounds are optimal since, in the autonomous space, the upper bound for each component coincides with the lower bound for that component. Another important result obtained in [1] is: if conditions (40) hold and $\left(u_{1}(t), u_{2}(t)\right)$ and $\left(v_{1}(t), v_{2}(t)\right)$ are any two solutions of (38) such that $u_{k}\left(t_{1}\right)>0, v_{k}\left(t_{1}\right)>0$ for $k=1,2$ and for some $t_{1} \geq t_{0}$, then $u_{1}(t)-v_{1}(t) \rightarrow 0$ and $u_{2}(t)-v_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Thus it follows that if $\left(u_{1}(t), u_{2}(t)\right)$ is any solution of (38) with both components positive at some time and ε is any arbitrary positive number, then

$$
s_{1}-\varepsilon<u_{1}(t)<r_{1}+\varepsilon, \quad r_{2}-\varepsilon<u_{2}(t)<s_{2}+\varepsilon
$$

for sufficiently large t.
Notice that if $u_{1}(t)$ and $u_{2}(t)$ are positive solutions of the logistic equations $u_{1}^{\prime}(t)=u_{1}(t)\left[\tilde{\mu}_{1}(t)-\mu_{1} u_{1}(t)\right]$ and $u_{2}^{\prime}(t)=u_{2}(t)\left[\tilde{\mu}_{2}(t)-\mu_{2} u_{2}(t)\right]$, respectively, then the pairs $\left(u_{1}(t), 0\right)$ and $\left(0, u_{2}(t)\right)$ are solutions of (38). Moreover, the open first quadrant in the $\left(u_{1}, u_{2}\right)$-plane is invariant in the sense that if $\left(u_{1}(t), u_{2}(t)\right)$ is a solution of (38) with $u_{1}(0)>0$ and $u_{2}(0)>0$ then $u_{1}(t)>0$ and $u_{2}(t)>0$ for all $t>0$.

If conditions (39) fail the following occurs:
(II.b) Under the assumption that the inequalities

$$
\begin{equation*}
\tilde{\mu}_{1 L} \mu_{2}>a_{1} \mu_{1} \tilde{\mu}_{2 M}, \quad \text { and } \quad \mu_{1} \tilde{\mu}_{2 M} \leq a_{2} \mu_{2} \tilde{\mu}_{1 L} \tag{41}
\end{equation*}
$$

hold (these are equivalent to (35) in the constant coefficients case), the main result proved in [2] gives us exact information about the development of the solutions of (38): If $\left(u_{1}(t), u_{2}(t)\right)$ is any solution of (38) such that $u_{1}\left(t_{0}\right)>0$ and $u_{2}\left(t_{0}\right)>0$ for some t_{0} in $(-\infty, \infty)$, then $u_{2}(t) \rightarrow 0$ and $u_{1}(t)-\hat{u}(t) \rightarrow 0$ as $t \rightarrow \infty$, where $\hat{u}(t)$ is the solution of the logistic equation

$$
\begin{equation*}
\hat{u}^{\prime}(t)=\hat{u}(t)\left[\tilde{\mu}_{1}(t)-\mu_{1} \hat{u}(t)\right], \tag{42}
\end{equation*}
$$

such that $\delta_{1} \leq \hat{u}(t) \leq \delta_{2}$ on $(-\infty, \infty)$ where δ_{1} and δ_{2} are any numbers satisfying the inequalities $0<\delta_{1}<\tilde{\mu}_{1 L} / \mu_{1} \leq \tilde{\mu}_{1 M} / \mu_{1}<\delta_{2}$.

Of course, a similar result, where the role of u_{1} and u_{2} are interchanged, will hold if the inequalities in (41) are replaced by

$$
\begin{equation*}
\tilde{\mu}_{1 M} \mu_{2} \leq a_{1} \mu_{1} \tilde{\mu}_{2 L}, \quad \mu_{1} \tilde{\mu}_{2 L}>a_{2} \mu_{2} \tilde{\mu}_{1 M} . \tag{43}
\end{equation*}
$$

An extension of this principle for nonautonomous systems was given in [2], where it was shown that similar algebraic inequalities imply that there can be no coexistence of the two species. One of them will be driven to extinction while the other will stabilize at a certain solution of a logistic equation.

In [3] it was considered a somewhat more general system, and given a further extension of the result by introducing a sufficient condition that is implied by (41) (and (43) respectively). If in (38) the coefficients verify the following conditions: $\tilde{\mu}_{i}(t)=\mu_{i}+f_{i}(t)$ are continuous and $f_{i}(t) \leq c_{i} e^{-\gamma_{i} t}$ where c_{i} and γ_{i} are positive constants and we do not assume the growth rate μ_{i} is positive, if (35) holds then if $\left(u_{1}(t), u_{2}(t)\right)$ is any solution of (38) such that $u_{1}\left(t_{0}\right)>0, u_{2}\left(t_{0}\right)>0$, then $u_{2}(t) \rightarrow 0$ exponentially and $u_{1}(t) \rightarrow \hat{u}(t)$ as $t \rightarrow \infty$, where $\hat{u}(t)$ is the unique positive solution of

$$
\hat{u}^{\prime}(t)=\hat{u}(t)\left[\mu_{1}-\mu_{1} \hat{u}(t)\right] .
$$

Proof of Theorem 3.2. Observe that all the coefficients for the general case (38) are always assumed to be bounded, continuous, and nonnegative: in our case, taking into account the continuity of f and the definitions of M and m (31), we confirm that these hypothesis are verified. For t_{0} large enough, taking into account (31), we can choose the positive parameters $\mu_{i}, \chi_{i}, i=1,2$, such that

$$
\begin{equation*}
\mu_{i}+\chi_{i} m(t) \geq 0, \quad \forall t \geq t_{0} . \tag{44}
\end{equation*}
$$

This will be the framework along the rest of this section and all the results are valid under conditions (44). Taking into account the structure of time depending coefficients, by (31), in limit, we rediscover from conditions corresponding to nonautonomous case the same conditions of the constant coefficients case. Thanks to above results concerning the asymptotic behavior of (29) and (38) we have

- Under assumption (34) for positive parameters $\lambda, \chi_{1}, \chi_{2}, \mu_{1}$ and μ_{2}, any solution $(\bar{u}(t), \underline{v}(t)),(\underline{u}(t), \bar{v}(t))$ of (29), with positive initial data satisfies

$$
\bar{u}(t) \rightarrow u^{*}, \quad \underline{u}(t) \rightarrow u^{*}, \quad \underline{v}(t) \rightarrow v^{*}, \quad \bar{v}(t) \rightarrow v^{*} \quad \text { as } \quad t \rightarrow \infty,
$$

with $\left(u^{*}, v^{*}\right)$ given by (33). In other words, under assumptions (34), we have that all solutions $(\bar{u}(t), \underline{v}(t))$ and $(\underline{u}(t), \bar{v}(t))$ of (29), with both pairs
$\left(\bar{u}\left(t_{0}\right), \underline{v}\left(t_{0}\right)\right)$ and $\left(\underline{u}\left(t_{0}\right), \bar{v}\left(t_{0}\right)\right)$ positive, ultimately approach the equilibrium solution (33). Therefore, applying (14) and Lemma 3.1 we conclude

$$
\begin{equation*}
\left\|u(\cdot, t)-u^{*}\right\|_{L^{\infty}(\Omega)}+\left\|v(\cdot, t)-v^{*}\right\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{45}
\end{equation*}
$$

- Assume the parameters $\lambda, \chi_{1}, \chi_{2}, \mu_{1}$ and μ_{2} are positive and (35) holds. For any solution $(\bar{u}(t), \underline{v}(t)),(\underline{u}(t), \bar{v}(t))$ of system (29), with positive initial data, we have

$$
\bar{u}(t) \rightarrow 1, \quad \underline{u}(t) \rightarrow 1, \quad \underline{v}(t) \rightarrow 0, \quad \bar{v}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

This is equivalent to saying that the species \bar{v} and \underline{v} become extinct if $\bar{u}\left(t_{0}\right)>0$ and $\underline{u}\left(t_{0}\right)>0$ and thanks to Theorem 2.1 and Lemma 3.1 we have

$$
\begin{equation*}
\|u(\cdot, t)-1\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{46}
\end{equation*}
$$

By symmetry if $a_{1}>1$ and $0 \leq a_{2}<1$ we have

$$
\begin{equation*}
\|u(\cdot, t)\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)-1\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{47}
\end{equation*}
$$

- If (37) is satisfied, $M=m=0$ (i.e. $f \equiv 0)$ and the initial data $\left(u_{0}, v_{0}\right)$ of (7) verifies

$$
\begin{equation*}
\underline{v}_{0}=\min _{x} v_{0}>\bar{u}_{0} \frac{a_{2}-1}{a_{1}-1}=\max _{x} u_{0} \frac{a_{2}-1}{a_{1}-1}, \tag{48}
\end{equation*}
$$

then

$$
\begin{equation*}
(\underline{u}, \bar{v}) \rightarrow(0,1), \quad(\bar{u}, \underline{v}) \rightarrow(0,1) \quad \text { as } \quad t \rightarrow \infty \tag{49}
\end{equation*}
$$

and therefore, by Theorem 2.1 and Lemma 3.1

$$
\begin{equation*}
\|u(\cdot, t)\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)-1\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{50}
\end{equation*}
$$

The proof of the asymptotic behavior of $(\underline{u}, \bar{u}, \underline{v}, \bar{v})$ is similar to Theorem 6 in [Braun [5], Chapter 4, section 11] see also exercise 6 in [5] p. 456.

On the other hand, if the initial data $\left(u_{0}, v_{0}\right)$ of (7) satisfies

$$
\begin{equation*}
\bar{v}_{0}=\max _{x} v_{0}<\underline{u}_{0} \frac{a_{2}-1}{a_{1}-1}=\min _{x} u_{0} \frac{a_{2}-1}{a_{1}-1}, \tag{51}
\end{equation*}
$$

then

$$
\begin{equation*}
(\underline{u}, \bar{v}) \rightarrow(1,0), \quad(\bar{u}, \underline{v}) \rightarrow(1,0) \quad \text { as } \quad t \rightarrow \infty \tag{52}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\|u(\cdot, t)-1\|_{L^{\infty}(\Omega)}+\|v(\cdot, t)\|_{L^{\infty}(\Omega)} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty \tag{53}
\end{equation*}
$$

Observe that under restriction (37), the stability of $\left(u^{*}, v^{*}\right)$ and $(0,0)$ in the case (I.c), the ODE analysis doesn't give us more information about the problem (7).

Since

$$
\tilde{\mu}_{i}(t) \longrightarrow \mu_{i} \quad \text { for } \quad i=1,2
$$

the solution of the non-autonomous system converges to one of the equilibrium solutions of the autonomous system defined in Theorem 3.2 as a consequence of (10). The equilibrium solution where the solution converges is determined by the sign of the following limits

$$
\lim _{t \rightarrow \infty}\left(\tilde{\mu}_{1 M} \mu_{2}-\mu_{1} a_{1} \tilde{\mu}_{2 L}\right), \quad \lim _{t \rightarrow \infty}\left(\tilde{\mu}_{2 L} \mu_{1}-a_{2} \mu_{2} \tilde{\mu}_{1 M}\right)
$$

which coincide with the signs of $1-a_{1}$ and $1-a_{2}$, respectively.
3.2. Problem 2. In this subsection we consider a system that describes the evolution of a cooperative system of two biological species (u, v) which satisfy

$$
\left\{\begin{array}{l}
u_{t}=d_{1} \Delta u^{r_{1}}-\chi_{1} \nabla(u \nabla w)-a u+\int_{\Omega}|v|^{p}, \quad x \in \Omega, t>0 \tag{54}\\
v_{t}=d_{2} \Delta v^{r_{2}}-\chi_{2} \nabla(v \nabla w)-b v+\int_{\Omega}|u|^{q}, \quad x \in \Omega, t>0 \\
-\Delta w+\lambda w=u+v \quad x \in \Omega, t>0
\end{array}\right.
$$

with Neumann boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=\frac{\partial w}{\partial n}=0, \quad x \in \partial \Omega, \quad t>0 \tag{55}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary such that $|\Omega|=1$ and

$$
a>0, \quad b>0, \quad r_{1} \geq 1, \quad r_{2} \geq 1, \quad p \geq 1 \quad \text { and } \quad q \geq 1
$$

The problem, where $\chi_{1}=\chi_{2}=0$ has been studied by several authors (see for instance [12], [13] and [17] and reference therein) where the critical exponents and blow-up rate of solutions are given. In [17] is proved a result concerning the local existence of solutions that are extended to a maximal interval of existence $\left(0, T_{\max }\right)$ such that

$$
\lim _{t \rightarrow T_{\max }}\|u\|_{L^{\infty}(\Omega)}+\|v\|_{L^{\infty}(\Omega)}+T_{\max }=\infty
$$

We consider the asymptotic behaviour of the solutions by using the comparison method presented in Section 2 for positive parameters χ_{1} and χ_{2}. We also provide results on the stability of steady states. Since nonlinear diffusion coefficients are not considered in Section 2 we can not directly apply Theorem 2.1 to (54)-(55) for $r_{1}>1$ or $r_{2}>1$. Nevertheless, it is possible to use a similar argument for the particular case of spatially homogeneous sub- and super- solution $\underline{u}, \underline{v}, \bar{u}$ and \bar{v}. Notice that the nonlocal term is not considered neither in Theorem 2.1.

The problem can be expressed as follows

$$
\begin{cases}u_{t}=d_{1} \Delta u^{r_{1}}-\chi_{1} \nabla u \cdot \nabla w+\chi_{1} u(u+v-\lambda w)-a u+\int_{\Omega}|v|^{p}, & x \in \Omega, t>0 \tag{56}\\ v_{t}=d_{2} \Delta v^{r_{2}}-\chi_{2} \nabla v \cdot \nabla w+\chi_{2} u(u+v-\lambda w)-b v+\int_{\Omega}|u|^{q}, & x \in \Omega, t>0 \\ -\Delta w+\lambda w=u+v \quad x \in \Omega, t>0\end{cases}
$$

In order to study the stability of the system, we first introduce the next lemma.
Lemma 3.3. Under assumptions (11), (12), there exists $T_{\max }>0$ such that the unique solution to the problem (54)-(55) satisfies

$$
u(x, t), v(x, t)>0, \quad \text { in } \quad x \in \Omega, \quad t<T
$$

where $T_{\text {max }}$ satisfies

$$
\lim _{t \rightarrow T_{\max }}\|u(t)\|_{L^{\infty}(\Omega)}+\|v(t)\|_{L^{\infty}(\Omega)}+t=\infty
$$

Proof. The existence of solutions follows a fixed point argument for the decoupled problem. Let us consider the set A, as the functions $\left(\psi_{1}, \psi_{2}\right) \in\left[C^{\alpha, \frac{\alpha}{2}}\left(\Omega_{T}\right)\right]^{2}$ satisfying

$$
e^{-(|a|+|b|) t} \min \left\{\inf _{x \in \Omega} u_{0}, \inf _{x \in \Omega} v_{0}\right\} \leq \psi_{i} \leq 2 \max \left\{\sup _{x \in \Omega} u_{0}, \sup _{x \in \Omega} v_{0}\right\}
$$

and let $J: A \rightarrow\left[C^{\alpha, \frac{\alpha}{2}}\left(\Omega_{T}\right)\right]^{2}$ be given by $J(\tilde{u}, \tilde{v})=(u, v)$ where (u, v) is the solution to the problem

$$
\left\{\begin{array}{l}
u_{t}=d_{1} r_{1} \nabla \cdot \tilde{u}^{r_{1}-1} \nabla u-\chi_{1} \nabla u \nabla w-a u+\int_{\Omega}|\tilde{v}|^{p}+\chi_{1} u(\tilde{u}+\tilde{v}-\lambda w), \text { in } \Omega_{T}, \\
v_{t}=d_{2} r_{2} \nabla \cdot \tilde{v}^{r_{2}-1} \nabla v-\chi_{2} \nabla v \nabla w-b v+\int_{\Omega}|\tilde{u}|^{q}+\chi_{2} v(\tilde{u}+\tilde{v}-\lambda w), \text { in } \Omega_{T} \\
\frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=0,
\end{array}\right.
$$

where w satisfies

$$
-\Delta w+\lambda w=\tilde{u}+\tilde{v} \quad \text { in } \Omega_{T}
$$

with Neumann boundary conditions. Linear PDEs Theory (see [11] Remark 48.3 (ii) page 439) gives us the existence and uniqueness of solutions in

$$
\left[L^{p}\left(0, T: W^{2, p}(\Omega)\right) \cap W^{1, p}\left(0, T: L^{p}(\Omega)\right)\right]^{2} \subset W^{1, p}\left(\Omega_{T}\right)^{2}, \quad \text { for some } p>n
$$

For T small enough we have that the solution remains in A. Since $\left[W^{1, p}\left(\Omega_{T}\right)\right]^{2} \hookrightarrow$ $\left[C^{\alpha, \frac{\alpha}{2}}\left(\Omega_{T}\right)\right]^{2}$ is a compact embedding, a Schauder fixed point Theorem allows us to obtain the existence of solutions in Ω_{T} for T small enough. Uniqueness is a consequence of the monotonicity of the differential operators, Lemma 3.3 and assumption $p, q \geq 1$. We now may extend the solution to a maximal interval $\left(0, T_{\max }\right)$ where the solution remains bounded and positive, since $\left(e^{-k t} \inf _{x \in \Omega} u_{0}, e^{-k t} \inf _{x \in \Omega} v_{0}\right)$ is a sub-solution to the problem (for some $k:=k\left(u_{0}, v_{0}, a, b\right)$) we have that the solution remains positive and $T_{\max }$ satisfies

$$
\lim _{t \rightarrow T_{\max }}\|u(t)\|_{L^{\infty}(\Omega)}+\|v(t)\|_{L^{\infty}(\Omega)}+T_{\max }=\infty
$$

Remark 2. Notice that

$$
\left.u, v \in L^{p}\left(0, T: W^{2, p}(\Omega)\right) \cap W^{1, p}\left(0, T: L^{p}(\Omega)\right)\right]^{2} \subset C^{\alpha, \frac{\alpha}{2}}\left(\Omega_{T_{\max }}\right)
$$

In order to apply a comparison method, we introduce the following system of equations

$$
\begin{array}{ll}
\bar{u}^{\prime}=-a \bar{u}+\bar{v}^{p}+\chi_{1} \bar{u}(\bar{u}+\bar{v}-\underline{u}-\underline{v}), & t>0, \\
\underline{u}^{\prime}=-a \underline{u}+\underline{v}^{p}+\chi_{1} \underline{u}(\underline{u}+\underline{v}-\bar{u}-\bar{v}) \quad t>0, \\
\bar{v}^{\prime}=-b \bar{v}+\bar{u}^{q}+\chi_{2} \bar{v}(\bar{u}+\bar{v}-\underline{u}-\underline{v}), \quad t>0, \\
\underline{v}^{\prime}=-b \underline{v}+\underline{u}^{q}+\chi_{2} \underline{v}(\underline{u}+\underline{v}-\bar{u}-\bar{v}), \quad t>0 . \tag{60}
\end{array}
$$

Notice that the solutions of the system are non negative provided the initial data $\bar{u}_{0}, \underline{u}_{0}, \bar{v}_{0}$ and \underline{v}_{0} are non negative.

Theorem 3.4. The unique solution to (54)-(55) satisfies

$$
\begin{equation*}
\underline{u} \leq u \leq \bar{u}, \quad \underline{v} \leq v \leq \bar{v}, \quad(x, t) \in \Omega \times\left(0, T_{\max }\right) \tag{61}
\end{equation*}
$$

where $\bar{u}, \underline{u}, \bar{v}$ and \underline{v} are the solutions to (57)-(60) and $T_{\max }$ is the maximum time of existence.

Proof. The proof is similar to the proof of Theorem 2.1 except for the step 1, which is replaced by Lemma 3.3, and the treatment of the following integrals:

$$
-\int_{\Omega} \bar{U}_{+} \Delta u^{r_{1}}=-r_{1} \int_{\Omega} \bar{U}_{+} \operatorname{div}\left(u^{r_{1}-1} \nabla u\right)=r_{1} \int_{\Omega} u^{r_{1}-1}\left|\nabla \bar{U}_{+}\right|^{2} \geq 0
$$

In the same way we have

$$
\begin{aligned}
& \int_{\Omega} \underline{U}-\Delta u^{r_{1}}=r_{1} \int_{\Omega} u^{r_{1}-1}\left|\nabla \underline{U}_{-}\right|^{2} \geq 0 \\
& -\int_{\Omega} \bar{V}_{+} \Delta v^{r_{2}}=r_{2} \int_{\Omega} v^{r_{2}-1}\left|\nabla \bar{V}_{+}\right|^{2} \geq 0
\end{aligned}
$$

and

$$
\int_{\Omega} \underline{V}_{-} \Delta v^{r_{2}}=r_{2} \int_{\Omega} v^{r_{2}-1}\left|\nabla \underline{V}_{-}\right|^{2} \geq 0
$$

The nonlocal terms are treated as follows: since u and \bar{u} are non-negative, we have that, by Mean Value Theorem, $u^{p}-\bar{u}^{p}=p \xi^{p-1}(u-\bar{u})$ for some positive function ξ. Notice that ξ is a bounded function for any $t<T_{\max }$. Therefore

$$
\bar{U}_{+} \int_{\Omega}\left(v^{p}-\bar{v}^{p}\right)=\bar{U}_{+} \int_{\Omega} p \xi^{p-1}(v-\bar{v}) \leq \bar{U}_{+} \int_{\Omega} p \xi^{p-1} \bar{V}_{+} \leq c(\xi, \Omega) \bar{U}_{+}\left\|\bar{V}_{+}\right\|_{L^{1}(\Omega)}
$$

and

$$
\begin{aligned}
\int_{\Omega}\left(\bar{U}_{+} \int_{\Omega}\left(v^{p}-\bar{v}^{p}\right)\right) & \leq c(\xi, \Omega)\left\|\bar{U}_{+}\right\|_{L^{1}(\Omega)}\left\|\bar{V}_{+}\right\|_{L^{1}(\Omega)} \\
& \leq c_{2}\left(\xi_{1}, \Omega\right)\left(\left\|\bar{U}_{+}\right\|_{L^{2}(\Omega)}^{2}+\left\|\bar{V}_{+}\right\|_{L^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

In the same way we have

$$
\begin{aligned}
-\int_{\Omega}\left(\underline{U}_{-} \int_{\Omega}\left(v^{p}-\underline{v}^{p}\right)\right) & \leq \int_{\Omega}\left(\underline{U}-\int_{\Omega} p \xi_{2}^{p-1}(v-\underline{v})_{-}\right) \leq \\
c_{2}\left(\xi_{2}, \Omega\right)\left\|\underline{U}_{-}\right\|_{L^{1}(\Omega)}\left\|\underline{V}_{-}\right\|_{L^{1}(\Omega)} & \leq c_{2}\left(\xi_{2}, \Omega\right)\left(\left\|\underline{U}_{-}\right\|_{L^{2}(\Omega)}^{2}+\left\|\underline{V}_{-}\right\|_{L^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega}\left(\bar{V}_{+} \int_{\Omega}\left(u^{q}-\bar{u}^{q}\right)\right) \leq \\
- & c_{3}\left(\xi_{3}, \Omega\right)\left(\left\|\bar{U}_{+}\right\|_{L^{2}(\Omega)}^{2}+\left\|\bar{V}_{+}\right\|_{L^{2}(\Omega)}^{2}\right) \\
- & \int_{\Omega}\left(\underline{V}-\int_{\Omega}\left(u^{q}-\underline{u}^{q}\right)\right) \leq c_{4}\left(\xi_{4}, \Omega\right)\left(\left\|\underline{U}_{-}\right\|_{L^{2}(\Omega)}^{2}+\left\|\underline{V}_{-}\right\|_{L^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

The rest of the proof follows the proof of Theorem 2.1.
We now consider different cases, depending on the values of χ_{i}. For completeness of the proof we also include the non-chemotactic case $\chi_{1}=\chi_{2}=0$.
Case I. $\chi_{1}=\chi_{2}=0$.
In that case the system (57) and (59) contains two positive steady states if

$$
\begin{equation*}
p+q>2 \tag{62}
\end{equation*}
$$

defined by

$$
(0,0), \quad \text { and } \quad\left(u^{*}, v^{*}\right):=\left(a^{\frac{1}{p q-1}} b^{\frac{p}{p q-1}}, a^{\frac{q}{p q-1}} b^{\frac{1}{p q-1}}\right) .
$$

Lemma 3.5. We have the following
a.- If $p=q=1$ and $a b>1$, any solution satisfies

$$
\lim _{t \rightarrow \infty}(\bar{u}, \bar{v})=(0,0)
$$

b.- If $p \geq 1$ and $q \geq 1$, under assumption (62):
$b_{1 .-}$ There exists a solution $\left(\bar{u}_{1}, \bar{v}_{1}\right)$ such that

$$
\begin{gather*}
\lim _{t \rightarrow \infty}\left(\bar{u}_{1}, \bar{v}_{1}\right)=(0,0), \lim _{t \rightarrow-\infty}\left(\bar{u}_{1}, \bar{v}_{1}\right)=\left(u^{*}, v^{*}\right), \\
\bar{u}_{1}^{\prime}<0 \text { and } \bar{v}_{1}^{\prime}<0 \text { for } t \in \mathbb{R} . \tag{63}
\end{gather*}
$$

b_{2}.- There exists a solution $\left(\bar{u}_{2}, \bar{v}_{2}\right)$ such that

$$
\begin{gather*}
\lim _{t \rightarrow-\infty}\left(\bar{u}_{2}, \bar{v}_{2}\right)=\left(u^{*}, v^{*}\right), \quad \lim _{t \rightarrow T}\left(\bar{u}_{2}, \bar{v}_{2}\right)=(\infty, \infty) \\
u_{2}^{\prime}>0 \text { and } v_{2}^{\prime}>0 \text { for } t<T \tag{64}
\end{gather*}
$$

for some $T \leq \infty$.
Proof. For the case (a) we have a linear system where $(0,0)$ is the steady state and both eigenvalues are negative as a consequence of $a b>1$. Therefore $(0,0)$ is asymptotically stable which proves (a).

For the second case there exists two steady states $(0,0)$ and $\left(u^{*}, v^{*}\right)$. We consider the regions

$$
\begin{aligned}
& A_{1}:=\left\{(\bar{u}, \bar{v}) \in \mathbb{R}^{2} \text { such that }-a \bar{u}+\bar{v}^{p} \leq 0,-b \bar{v}+\bar{u}^{q} \leq 0, \bar{u} \leq u^{*} \text { and } \bar{v} \leq v^{*}\right\}, \\
& A_{2}:=\left\{(\bar{u}, \bar{v}) \in \mathbb{R}^{2} \text { such that }-a \bar{u}+\bar{v}^{p} \geq 0,-b \bar{v}+\bar{u}^{q} \geq 0, \bar{u} \geq u^{*} \text { and } \bar{v} \geq v^{*}\right\} .
\end{aligned}
$$

Notice that

- A_{1} contains both steady states,
- $\bar{u}^{\prime}<0$ and $\bar{v}^{\prime}<0$ in the interior of A_{1},
- $\left(\bar{u}^{\prime}, \bar{v}^{\prime}\right) \cdot \nu<0$ in ∂A_{1} except for $(0,0)$ and $\left(u^{*}, v^{*}\right)$. Where ν is the exterior unit normal vector to A_{1}.
Since there is not any steady state or periodic solution in the interior of A_{1}, we have that there exists a solution $\left(\bar{u}_{1}, \bar{v}_{1}\right)$ satisfying (63).

In the same way, thanks to $\left(\bar{u}^{\prime}, \bar{v}^{\prime}\right) \cdot \nu<0$ in ∂A_{2} (except in the critical point $\left.\left(u^{*}, v^{*}\right)\right)$ and $\bar{u}^{\prime}>0$ and $\bar{v}^{\prime}>0$ in the interior of A_{2} we obtain that there exists a solution $\left(\bar{u}_{2}, \bar{v}_{2}\right)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left(\bar{u}_{2}, \bar{v}_{2}\right)=\left(u^{*}, v^{*}\right), \quad \lim _{t \rightarrow T}\left|\bar{u}_{2}\right|+\left|\bar{v}_{2}\right|=\infty \tag{65}
\end{equation*}
$$

for some $T \leq \infty$. If

$$
\lim _{t \rightarrow T} \bar{u}_{2}(t)<\infty \quad \text { or } \quad \lim _{t \rightarrow T} \bar{v}_{2}(t)<\infty
$$

occurs, we have that \bar{u}_{2} and \bar{v}_{2} are uniformly bounded in $(0, T)$ which contradicts (65) and proves (64).

Case II. $\chi_{1}+\chi_{2}>0$
Lemma 3.6. Let $p, q \geq 1$ and $a, b>0$, such that there exists $s^{*} \leq 1$ and

$$
\begin{equation*}
-\min \{a, b\} s+s^{\min \{p, q\}}+2 \max \left\{\chi_{1}, \chi_{2}\right\} s^{2}<0 \tag{66}
\end{equation*}
$$

for any $s<s^{*}$, we have that for $0 \leq \bar{u}_{0}+\bar{v}_{0}<s^{*}$ the solution (\bar{u}, \bar{v}) to the problem satisfies

$$
(\bar{u}, \bar{v}) \rightarrow(0,0) \quad \text { as } t \rightarrow \infty
$$

Proof. Notice that, since the solutions are positive, the solutions (\bar{u}_{1}, \bar{v}_{1}) to the following system are upper bounds of the solutions to (57)-(60).

$$
\begin{align*}
& \bar{u}_{1}^{\prime}=-a \bar{u}_{1}+\bar{v}_{1}^{p}+\chi_{1} \bar{u}_{1}\left(\bar{u}_{1}+\bar{v}_{1}\right), \quad t>0, \tag{67}\\
& \bar{v}_{1}^{\prime}=-b \bar{v}_{1}+\bar{u}_{1}^{q}+\chi_{2} \bar{v}_{1}\left(\bar{u}_{1}+\bar{v}_{1}\right), \quad t>0 . \tag{68}
\end{align*}
$$

We add the above expressions to obtain

$$
\bar{u}_{1}^{\prime}+\bar{v}_{1}^{\prime} \leq-\min \{a, b\}\left(\bar{u}_{1}+\bar{v}_{1}\right)+\left(\bar{u}_{1}+\bar{v}_{1}\right)^{\min \{p, q\}}+2 \max \left\{\chi_{1}, \chi_{2}\right\}\left(\bar{u}_{1}+\bar{v}_{1}\right)^{2}
$$

since the solution w to the equation

$$
\begin{gathered}
w^{\prime}=-\min \{a, b\} w+w^{\min \{p, q\}}+2 \max \left\{\chi_{1}, \chi_{2}\right\} w^{2} \\
0<w(0)<s^{*}
\end{gathered}
$$

satisfies

$$
\lim _{t \rightarrow \infty} w=0
$$

we have, by Maximum Principle that

$$
\lim _{t \rightarrow \infty} \bar{u}_{1}=\lim _{t \rightarrow \infty} \bar{v}_{1}=0
$$

and therefore

$$
\lim _{t \rightarrow \infty} \bar{u}=\lim _{t \rightarrow \infty} \bar{v}=0
$$

if

$$
\bar{u}_{0}+\bar{v}_{0}<s^{*} .
$$

Now we formulate a comparison result similar to Theorem 2.1:
Theorem 3.7. - Case I, $\chi_{1}=\chi_{2}=0$
i - If $p=q=1$ and $a b>1$ the solution to (54)-(55) satisfies

$$
\lim _{t \rightarrow \infty}\|u\|_{L^{\infty}(\Omega)}+\|v\|_{L^{\infty}(\Omega)}=0
$$

for any positive and bounded initial data.
ii 1_{1} - If $p \geq 1$ and $q \geq 1$ and (62) is satisfied, we have that the solution to (54)-(55) satisfies

$$
\|u\|_{L^{\infty}(\Omega)}+\|v\|_{L^{\infty}(\Omega)} \longrightarrow 0 \quad \text { as } t \rightarrow \infty
$$

if the non negative initial data satisfy

$$
\begin{equation*}
\sup _{\Omega} u_{0}<u^{*} \quad \text { and } \quad \sup _{\Omega} v_{0}<v^{*} \text {. } \tag{69}
\end{equation*}
$$

ii i_{2} - If $p \geq 1$ and $q \geq 1$ and (62) is satisfied, then, the solution to (54)-(55) satisfies

$$
\|u\|_{L^{\infty}(\Omega)}+\|v\|_{L^{\infty}(\Omega)} \longrightarrow \infty \quad \text { as } t \rightarrow T
$$

for some $T \leq \infty$, if the initial data satisfy

$$
\begin{equation*}
\inf _{\Omega} u_{0}>u^{*} \quad \text { and } \quad \inf _{\Omega} v_{0}>v^{*} \tag{70}
\end{equation*}
$$

- Case II. $\chi_{1}+\chi_{2}>0$ if either
$I I_{i}$ - If $p, q>1, a, b>0$
or
$I I_{i i^{-}}$If $\min \{p, q\}=1$ and $\min \{a, b\}>1$, then, for any initial data $\left(u_{0}, v_{0}\right)$ satisfying

$$
\left\|u_{0}\right\|_{L^{\infty}}+\left\|v_{0}\right\|_{L^{\infty}}<s^{*}
$$

(for s^{*} defined in Lemma 3.6) we have that

$$
\|u\|_{L^{\infty}(\Omega)}+\|v\|_{L^{\infty}(\Omega)} \longrightarrow 0 \quad \text { as } t \rightarrow \infty
$$

Proof. The proof of " i " is a direct consequence of Theorem 3.4 and Lemma 3.5-(a) provided the initial data $\left(\bar{u}_{0}, \bar{v}_{0}\right)$ satisfy

$$
\underline{u}_{0}<u_{0}<\bar{u}_{0}, \quad \underline{v}_{0}<v_{0}<\bar{u}_{0} .
$$

For the case $i i_{1}$, the assumption (69) implies that there exists bounded initial data $\left(\bar{u}_{0}, \bar{v}_{0}\right)$ which belong to the trajectory $\left(\bar{u}_{1}, \bar{v}_{1}\right)$ and satisfy $u_{0} \leq \bar{u}_{0}$ and $v_{0} \leq \bar{v}_{0}$. Thanks to Theorem 3.4 and Lemma 3.5- $\left(b_{1}\right)$ we conclude $i i_{1}$.

If (70) is verified, we take initial data $\left(\underline{u}_{0}, \underline{v}_{0}\right)$ in the trajectory $\left(\bar{u}_{2}, \bar{v}_{2}\right)$ such that $u_{0} \geq \underline{u}_{0}$, and $v_{0} \geq \underline{v}_{0}$. We apply Theorem 3.4 and Lemma 3.5- $\left(b_{2}\right)$ to obtain $i i_{2}$.

The proof of case II is based in a comparison argument for the system of ODEs. We consider initial data ($\bar{u}_{0}, \underline{u}_{0}, \bar{v}_{0}, \underline{v}_{0}$) such that

$$
\bar{u}_{0}+\bar{v}_{0}<s^{*},
$$

for s^{*} defined in Lemma 3.6. Since assumption (66) is satisfied for the cases $I I_{i}$ and $I I_{i i}$ we apply Lemma 3.6 and Theorem 3.4 to end the proof.

REFERENCES

[1] S. Ahmad, Convergence and ultimate bound of solutions of the nonautonomous Volterra-Lotka Competition Equations, J. Math. Anal. and Appl., 127 (1987), 377-387.
[2] S. Ahmad, On the nonautonomous Volterra-Lotka competition equations, Proc. American Math. Society, 117 (1993), 199-204.
[3] S. Ahmad, Extintion of species in nonautonomous Volterra-Lotka systems, Proc. American Math. Society, 127 (1999), 2905-2910.
[4] S. Ahmad and A. C. Lazer, Necessary and sufficient average growth in a Lotka-Volterra system, Nonlinear Analysis, 13 (1998), 263-284.
[5] M. Braun, Differential Equations and Their Applications, An introduction to applied mathematics. Fourth edition. Texts in Applied Mathematics, 11. Springer-Verlag, New York, 1993.
[6] A. Derlet and P. Takáč, A quasilinear parabolic model for population evolution, Differential equations and Applications, 4 (2012), 121-136.
[7] A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks, J. Math. Anal. Appl., 272 (2002), 138-163.
[8] M. Negreanu and J. I. Tello, On a Parabolic-Elliptic chemotactic system with non-constant chemotactic sensitivity, Nonlinear Analysis: Theory, Methods \& Applications, 80 (2013), 1-13.
[9] M. Negreanu and J. I. Tello, On a competitive system under chemotactic effects with non-local terms, Nonlinearity, 26 (2013), 1086-1103.
[10] C. V. Pao, Comparison methods and stability analysis of reaction-diffusion systems, In the book Comparison Methods and Stability Theory, Lecture Notes in Pure and Appl. Math., 162, pp 277-292. Dekker, New York, 1994.
[11] P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkh?user Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, 2007.
[12] P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301-1334.
[13] P. Souplet, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Diff. Equat., 153 (1999), 374-406.
[14] C. Stinner, J. I. Tello and M. Winkler. Competitive exclusion in a two species chemotaxis model, J. Math. Biology, (2013).
[15] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Communications in Partial Differential Equations, 32 (2007), 849-877.
[16] J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.
[17] S. Zheng and H. Su, A quasilinear reaction-diffusion system coupled via nonlocal sources, Applied Mathematics and Computation, 180 (2006), 295-308.

Received November 2012; 1st revision March 2013; 2nd revision April 2013.
E-mail address: negreanu@mat.ucm.es
E-mail address: jtello@eui.upm.es

[^0]: 2010 Mathematics Subject Classification. Primary: 35B35, 35B40; Secondary: 35B51.
 Key words and phrases. Comparison method, asymptotic behavior, stability, sub- and supersolutions.

 The authors are partially supported by Ministerio de Economía y Competitividad under grant MTM2009-13655 (Spain).

