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a b s t r a c t

Westudy aparabolic–elliptic chemotactic systemdescribing the evolution of a population’s
density ‘‘u’’ and a chemoattractant’s concentration ‘‘v’’. The system considers a non-
constant chemotactic sensitivity given by ‘‘χ(N − u)’’, for N ≥ 0, and a source term of
logistic type ‘‘λu(1 − u)’’. The existence of global bounded classical solutions is proved for
any χ > 0, N ≥ 0 and λ ≥ 0. By using a comparison argument we analyze the stability of
the constant steady state u = 1, v = 1, for a range of parameters.

– For N > 1 and Nλ > 2χ , any positive and bounded solution converges to the steady
state.

– For N ≤ 1 the steady state is locally asymptotically stable and for χN < λ, the steady
state is globally asymptotically stable.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Chemotaxis is the biological phenomenon whereby living organisms respond to a chemical substance by motion and
rearrangement. One of the first mathematical models of chemotaxis was introduced by Keller and Segel [1] after Patlak [2].
The Patlak/Keller–Segelmodel considers a systemof twoparabolic equationswhile other authors have considered parabolic-
ode or parabolic–elliptic systems of equations (see the review article of Horstmann [3] and the references therein for
details). Keller and Segel [1] proposed a general model of partial differential equations for a population’s density ‘‘u’’ and a
chemoattractant’s concentration ‘‘v’’

�
ut = ∇ · (∇u − uχ(v)∇v) + g(u),
�vt − �v = f (u, v).

Hillen and Painter [4] consider an extension to the previousmodels introducing the effects of the finite size of individual cells
and the employment of cell density sensing mechanisms ‘‘volume filling’’. The model has been formally derived by Painter
and Hillen [5] for a nonlinear diffusion and a cross-diffusion term of the form uχ(u, v)∇v instead of the term uχ(v)∇v
used in classical models; see also [6,16,17] and the reference therein for more details. The authors introduced a probabilistic
approach to arrive at the following model

�
ut = ∇ ·

�
q(u) − uq�(u)∇u − uq(u)χ(v)∇v

�
+ g(u, v),

�vt − �v = f (u, v),
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where ‘‘q’’ represents the probability that a cell finds space at its neighboring location. In [4] the authors consider the case

q(u) = D(N − u), (1.1)

which gives a constant diffusion coefficient DN . Notice that up to the threshold value ‘‘N ’’ the chemotaxis term is negative
and the individuals move to a lower concentration of chemoattractant. The change of sign in q characterized the system
which may evolve from positive to negative taxis or vice versa.

The growth term ‘‘g ’’ in the first equation is defined by a logistic function and after normalization, g has the following
expression

g(u) = λu(1 − u). (1.2)

Growth effects in chemotaxis systems has been considered to study the large time behavior. In absence of growth termswith
constant chemosensitivity, the solution of the parabolic–elliptic system blows up at finite time in dimension 2 for a range of
initial masses (see for instance Horstman [3] and Velázquez [7]). Growth termsmay prevent blow up in chemotaxis systems,
as shown by the numerous examples existing in the literature. For instance, in Osaki, Tsujikawa, Yagi and Mimura [8], the
logistic growth in a two dimensional parabolic–parabolic chemotaxis system drives the solution to an exponential attractor
in a suitable space. In Winkler [9], growth terms f ∈ W 1,∞

loc (R) satisfying f (s) ≤ a − µs2 for µ > µ0(a) shows global
existence of solutions with no dimensional restrictions, i.e. n ≥ 1. Similar result for the parabolic–elliptic problem can be
found in Mimura and Tsujikawa [10] (see also [11] and [15]).

Notice that the threshold value in the chemotaxis and logistic terms N and 1 are not necessarily equal. The sign of the
difference of these values gives a different analysis of the stability of the constant steady states (see Section 3 in present
paper for details).

Different authors consider a fast diffusion process for the chemoattractant substance and simplify the parabolic equation
describing the evolution of v by an elliptic equation taking � = 0 (see for instance Velázquez [7] or Wang, Winkler and
Wrzosek [12]). The equation is simplified by the following one

−�v = f (u, v).

In numerous biologically relevant processes, the chemical substance is produced by the individuals of the population and
the function f satisfies

∂ f
∂u

> 0.

As in the classical Keller–Segel system we consider a degradation of v and simplify the term f by the linear expression
f (u, v) = f0u − f1v and without loss of generality we assume f0 = f1 = 1. Then the distribution of chemoattractant is
governed by the linear elliptic equation of the form

−�v + v = u.

We consider a ‘‘volume filling’’ model with fast diffusion process for the chemical substance with logistic growth term.
The problem is given by a parabolic–elliptic system defined over a bounded domain Ω with regular boundary ∂Ω:

�
ut − �u = −χ∇ · (u(N − u)∇v) + λu(1 − u), x ∈ Ω, t > 0,
−�v + v = u, x ∈ Ω, t > 0, (1.3)

with the Neumann boundary conditions

∂u
∂n

= ∂v

∂n
= 0, x ∈ ∂Ω, t > 0 (1.4)

and the initial data

u(0, x) = u0(x), x ∈ Ω. (1.5)

We also consider that the initial data satisfies

u0 ∈ C2,α(Ω) and
∂u0

∂n
= 0.

The main result of the paper is the asymptotic stability of the constant steady state u = v = 1, for a range of parameters
and initial data u0. The result is enclosed in the following theorem.

Theorem 1.1. Let β > 0 such that β ≤ u0, for x ∈ Ω . Then

1. if N > 1 and λN > 2χ ,
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2. if N ≤ 1 and either:

λ > χ or β ≥ N or β − max{max
x∈Ω

{u0}, 1}χ + λ > 0

then, the solution (u, v) to (1.3) satisfies

�u − 1�L∞(Ω) + �v − 1�L∞(Ω) → 0 as t → ∞.

In order to proof the theorem and analyze the stability of the problem, we introduce two auxiliary functions u, u as the
solutions of a system of ODE’s. Since standard comparison arguments cannot be applied due to the sign variability of the
chemotactic sensitivity, we introduce a comparison argument to obtain u ≤ u ≤ u in Section 3. In Section 3.5 we analyze
the system of ODE’s to obtain the asymptotic behavior of the barrier functions. In Section 4 the existence and uniqueness of
solutions is presented using the results of Section 3.5 as a priori estimates. The paper ends with a corollary of Theorem 1.1
concerning the steady states of the system.

Remark 1.2. If the logistic term in (1.3) is replaced by a continuous function g : R → R such that g(0) ≥ 0 and there exists
λ ≥ 0 such that

(g(x) − g(y))sign(x − y) ≤ λ|x − y|, for any x, y ∈ R+, (1.6)

for some λ ≥ 0, then, Theorem 3.1 is valid if the system of ODEs (2.1) is replaced by
�ut = χu(N − u)(u − φ1(u, u)) + g(u), t > 0,
ut = χu(N − u)(u − φ2(u, u)) + g(u), t > 0,
0 < u0 ≤ u0 ≤ u0 < ∞,

where φ1 and φ2 are defined in (2.3) and (2.4) respectively. To obtain a similar result that in Theorem 1.1, the solution of the
previous ODE system has to satisfy

u, u → 1, as t → ∞.

2. Analysis of the associated ODE system

In this section we consider the system of ODE’s associated to the nonlinear system of PDE’s
�
ut = χu(N − u)(u − φ1(u, u)) + λu(1 − u), t > 0,
ut = χu(N − u)(u − φ2(u, u)) + λu(1 − u), t > 0, (2.1)

with initial conditions

u(0) = u0, u(0) = u0, (2.2)

where φ1(·, ·) and φ2(·, ·) are defined by

φ1(u, u) =
�
u if u < N,
u if u ≥ N,

(2.3)

φ2(u, u) =
�
u if u < N,
u if u ≥ N.

(2.4)

To begin with, let us make sure that the initial ordering 0 < u0 < u0 is inherited by the solution. Moreover we shall
prove that (u, u) is actually global in time and bounded, results which we present in the following lemma.

Lemma 2.1. The solution to the system (2.1)–(2.2) exists in (0, ∞). Moreover, under the assumption

0 < u0 < u0 < ∞ (2.5)

the solution satisfies

0 < u < u ≤ max{u0,N, 1} for any t < ∞. (2.6)

Proof. It is easy to observe that the functions

χu(N − u)(u − φ1(u, u)) + λu(1 − u)

and

χu(N − u)(u − φ2(u, u)) + λu(1 − u)
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are continuous and locally Lipschitz in u and u. In fact, (2.1)–(2.2) is locally well posed and there exists an unique local
solution for t ∈ (0, Tmax) such that, if Tmax < ∞, we have |u(Tmax)| + |u(Tmax)| = ∞.

Since max{u0,N, 1} is a super-solution to the first equation and u = 0 is a sub-solution to the second equation in (2.1),
we have, by uniqueness of solutions, that

0 < u, u ≤ max{u0,N, 1}.
To prove u < u, we argue by contradiction. Hence, if u < u is false, then, there exist some positive t0 < Tmax such that

u(t0) = u(t0), u(t) < u(t) for t < t0. (2.7)

The solution to (2.1)–(2.2), with initial data u(t0) = u(t0), satisfies u = u for any t > t0. We extend such solution to
(t0 − �, t0) to have u = u for t ∈ (t0 − �, t0 + �) which contradicts (2.7) and proves that

u(t) < u(t) for t ∈ (0, Tmax). (2.8)

(2.7) and (2.8) prove Tmax = ∞ and concludes the proof. �

In order to analyze the system (2.1)–(2.2) we consider two different cases, N ≤ 1 and N > 1.

Lemma 2.2. Let us assume that N ≤ 1 and u0 < 1, then:

1. Under the assumption u0 ≥ 1 we find that the solution u to the first equation in (2.1) is given by

u(t) = u0eλt

1 + u0(eλt − 1)
. (2.9)

2. If u0 ≥ 1 and λ > χ , then

u → 1 as t → ∞. (2.10)

3. Let u0 ≥ 1 ≥ u0 > 0 then, if

u0 ≥ N, (2.11)

or

(u0 − max{u0, 1})χ + λ > 0, (2.12)

we have

u → 1 as t → ∞. (2.13)

Proof. 1. Since u0 ≥ 1 ≥ N we have that φ1(u) = u and then, u satisfies

ut = λu(1 − u),

which solution is given by (2.9).
2. Notice that u satisfies

ut = χu(N − u)(u − u) + λu(1 − u),

which implies

ut ≥ u(1 − u)(χ(u − u) + λ) ≥ u(1 − u)(λ − χu). (2.14)

Since u = u0eλt

1+u0(eλt−1) , there exists t0 > 0, such that 1 − u ≤ λ−χ
2χ and this is equivalent to

u(1 − u)(λ − χu) ≥ u(1 − u)
λ − χ

2
, for t > t0. (2.15)

In view of (2.14) and (2.15), we have

ut ≥ u(1 − u)
λ − χ

2
, for t > t0,

and therefore

lim
t→∞

u ≥ 1.

Eq. (2.6) and Lemma 2.1 end the proof in this case.
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3. We consider two different cases: u0 ≥ N and u0 < N
• If u0 ≥ N , the solution satisfies

ut = λu(1 − u)

and the solution is given by

u = u0e
λt

1 + u0(eλt − 1)
,

which satisfies (2.13).
• If u0 < N , we have

ut = χu(N − u)(u − u) + λu(1 − u)

and since u = u0eλt

1+u0(eλt−1) , which is a monotone decreasing function, thus, as far as u ≤ N ,

ut ≥ χu(N − u)(u − u0) + λu(1 − u),

which implies

ut ≥ u(1 − u)(λ + χ(u − u0)).

Since u0 satisfies (2.12), we have ut |t=0 > 0 and therefore

λ + χ(u − u0) ≥ λ + χ(u0 − u0) > 0,

and then u satisfies

ut ≥ �u(1 − u),

as far as u ≤ N , for � := λ + χ(u0 − u0) ≤ λand

u = u0e
�t

1 + u0(e�t − 1)
,

as far as u ≤ N . If N < 1, there exists t0 < ∞ such that u = N, ut = λu(1 − u), for t ≥ t0 as we wanted to prove. �

Lemma 2.3. We assume that N > 1.

1. There exists t0 ≥ 0 such that u(t0) ≤ N.
2. Let u0 ∈ [1,N] and 0 < u0 < u0 < ∞. Then, under the assumption

λN > 2χ , (2.16)

we have

u, u → 1 as t → ∞. (2.17)

Proof. 1. Since the case u0 ≤ N is trivial, we just consider the case u0 > N , where u satisfies

ut = λu(1 − u)

as far as u ≥ N . Therefore we have

u = u0eλt

1 + u0(eλt − 1)
for t ≤ 1

λ
ln

N(u0 − 1)
u0(N − 1)

.

Then u = N for t = 1
λ
ln N(u0−1)

u0(N−1) , and the proof in the first case finishes.
Notice that it is enough to consider the case u0 ≤ N , which is study the next part of the proof.

2. Since u0 > u0 we have

ut = χu(N − u)(u − u) + λu(1 − u), (2.18)

ut = χu(N − u)(u − u) + λu(1 − u). (2.19)

Notice that by (2.5), u = N is a supersolution to (2.18), and therefore

ut ≤ χNu(u − u) + λu(1 − u). (2.20)

In the same way we have

ut ≥ χNu(u − u) + λu(1 − u). (2.21)



6 M. Negreanu, J. Ignacio Tello / Nonlinear Analysis 80 (2013) 1–13

System (2.20), (2.21) is treated as in [11]. Since 0 < u < u it results
ut

u
≤ χN(u − u) + λ(1 − u),

ut

u
≥ χN(u − u) + λ(1 − u).

We subtract both equations to obtain

d
dt

�
ln u − ln u

�
≤ (2χN − λ)(u − u). (2.22)

After integration over (0, t), we get that

ln
u
u

≤ ln
u0

u0
,

i.e.,
u0

u0
u ≤ u.

Since the initial data satisfies u0 ≥ 1 we notice that

u ≥ 1. (2.23)

Therefore, we have
u0

u0
≤ u. (2.24)

Thanks to (2.22), (2.24) and Mean Value Theorem, we obtain

d
dt

�
ln u − ln u

�
≤ (2χN − λ)

u0

u0
(ln u − ln u) (2.25)

and after integration we conclude
�
ln u − ln u

�
→ 0,

and thanks to (2.23) the proof ends. �

3. Comparison argument

In this section we detail the computations of the comparison argument which establishes the connection between
(2.1)–(2.2) and (1.3).

Theorem 3.1. Let u0 ∈ L∞(Ω) and β > 0 such that

β ≤ u0 ≤ u0 ≤ u0 in Ω.

Then, the solution (u, v) of (1.3) fulfills

u ≤ u ≤ u, u ≤ v ≤ u (x, t) ∈ Ω × (0, ∞). (3.1)

In order to prove the theorem we introduce the following notations:

U(x, t) := u(x, t) − u(t), U(x, t) := u(x, t) − u(t),

V (x, t) := v(x, t) − u(t), V (x, t) := v(x, t) − u(t),
(3.2)

and the standard positive and negative part functions:

(s)+ =
�
s if s ≥ 0,
0 otherwise (s)− = (−s)+.

Notice that (1.3) is equivalent to





ut − �u = −χ(N − 2u)∇u · ∇v + χu(N − u)(u − v) + g(u) in ΩT ,
−�v + v = u in ΩT ,
∂u
∂n

= ∂v

∂n
= 0, in ∂Ω,

u(0, x) = u0(x) in Ω.

(3.3)
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Then U satisfies the following PDE

Ut − �U = −χ(N − 2u)∇U · ∇v + χu(N − u)(u − v) − χu(N − u)(u − φ1(u, u)) + g(u) − g(u). (3.4)

We take U
s−1
+ as test function in (3.4), i.e., multiply by U

s−1
+ for

s := max
�n
2

+ 1, 7
�

. (3.5)

For technical reasons due to Sobolev embeddings we have to consider s > n
2 , that will be detailed at the end of the proof.

We integrate by parts over Ω to obtain, after some routinary computations:
1
s

d
dt

�

Ω

U
s
+ + (s − 1)

�

Ω

U
s−2
+ |∇U+|2 = −χ

�

Ω

U
s−1
+ (N − 2u)∇U+ · ∇v +

�

Ω

U
s−1
+ (g(u) − g(u))

+ χ

�

Ω

U
s−1
+ [u(N − u)(u − v) − u(N − u)(u − φ1(u, u))]. (3.6)

In order to prove the theorem we consider the following technical lemma:

Lemma 3.2. Let Ω ⊂ Rn for p ∈ N, p ∈ (max{ n
2 , 1}, ∞) and v the solution to

�−�v + v = u, x ∈ Ω,
∂v

∂n
= 0, x ∈ ∂Ω,

(3.7)

for u ∈ Lp(Ω). Then, for any q ≤ ∞ the following inequalities holds:

�V+�Lq(Ω) ≤ C(Ω, q, p)�U+�Lp(Ω) (3.8)

and

�V−�Lq(Ω) ≤ C(Ω, q, p)�U−�Lp(Ω). (3.9)

Proof. Thanks to (3.2) we may rewrite (3.7) as follows





−�V + V = U, x ∈ Ω,

∂V
∂n

= 0, x ∈ ∂Ω.

We consider now V1, the solution to the problem
�−�V1 + V1 = U+, x ∈ Ω,

∂V1

∂n
= 0, x ∈ ∂Ω,

and apply maximum principle to have that V1 ≥ 0. Since U+ ∈ Lp(Ω) we obtain

�V1�W2,p(Ω) ≤ C1(Ω)�U+�Lp(Ω),

thanks to the embeddingW 2,p(Ω) �→ L∞(Ω) for p > n
2 we have that,

�V1�Lq(Ω) ≤ C2(Ω)�V1�W2,p(Ω) ≤ C3(Ω)�U+�Lp(Ω) for any q ≤ ∞. (3.10)

Since U ≤ U+, by maximum principle we get that V ≤ V1 and therefore

0 ≤ V+ ≤ (V1)+ = V1,

which implies,

�V+�Lq(Ω) ≤ �V1�Lq(Ω) for any q < ∞. (3.11)

Thanks to (3.10) and (3.11) we have (3.8). The same argument proves (3.9) and the proof ends. �

Lemma 3.3. For any � > 0 arbitrary there exists a positive constant k(�) such that, with the above notations, the below inequality
holds �

Ω

[χu(N − u)(u − v) − χu(N − u)(u − φ1(u, u))]Us−1
+

≤ −χ(1 − �)

�

Ω

U
s+2
+ + k(�)

�

Ω

U
s
+ + k(�)

�

Ω

[V s s+1
s−1

+ + V
s+2
+ + V s+2

− + V
s+1
+ + V

s
+ + V s

−]. (3.12)
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Proof. Since u = U + u, we have

u(N − u)(u − v) − u(N − u)(u − φ1(u, u)) = U(N − U)(u − v) − Uu(u − v) + u(N − U)(u − v)

− u2(u − v) − u(N − u)(u − φ1(u, u))

and after some computations, we obtain that

u(N − u)(u − v) − u(N − u)(u − φ1(u, u)) = U(N − U − 2u)(u − v) + u(N − u)[U − v + φ1].
Taking into account that u − v = U − V , we deduce the following

U
s−1
+ [U(N − U − 2u)(U − V ) + u(N − u)(U − (v − φ1))]
= U

s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − (v − φ1)U

s−1
+ ).

In order to bound the terms in the above equation, we distinguish three different cases:
Case I. u ≥ N .

In this case, N − u ≤ 0 and φ1 = u, then

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − (v − φ1)U

s−1
+ )

= U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − V U

s−1
+ ). (3.13)

Notice that since U+U = U
2
+ we have

U
s
+(N − U − 2u)(U − V ) = U

s
+(N − U+ − 2u)(U+ − V ).

We apply the positive part function to the term which contains V to obtain

−U
s
+(N − U+ − 2u)V ≤ [−U

s
+(N − U+ − 2u)V ]+.

In this case (N − u ≤ 0) we deduce that N − U+ − 2u ≤ 0 to get

[−U
s
+(N − U+ − 2u)V ]+ = −U

s
+(N − U+ − 2u)V+ (3.14)

which gives

U
s
+(N − U+ − 2u)(U+ − V ) ≤ U

s
+(N − U+ − 2u)(U+ − V+).

In the second term of (3.13), since u(N − u) ≤ 0 we have

u(N − u)(U
s
+ − VU

s−1
+ ) ≤ u(N − u)(U

s
+ − V+U

s−1
+ ).

Therefore

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − (v − φ1)U

s−1
+ )

≤ U
s
+(N − U+ − 2u)(U+ − V+) + u(N − u)(U

s
+ − V+U

s−1
+ )

= −U
s+2
+ + U

s+1
+ (N − 2u + V+) − U

s
+(N − 2u)V+ + u(N − u)U

s
+ − u(N − u)V+U

s−1
+ .

Since

U
s
+V+ ≤ U

s+1
+ + k1(s)V

s+1
+ ,

then

U
s+1
+ (N − 2u) − U

s
+(N − 2u)V+ ≤ k(s, �u�L∞)V

s+1
+ .

Thanks to the previous inequality and

U
s+1
+ V+ ≤ �U

s+2
+ + k(�)V

s+2
+ , U

s−1
+ V+ ≤ s − 1

s
U

s
+ + 1

s
V

s
+ (3.15)

we have

−U
s+2
+ + U

s+1
+ (N − 2u + V+) − U

s
+(N − 2u)V+ + u(N − u)U

s
+ − u(N − u)V+U

s−1
+

≤ −(1 − �)U
s+2
+ + k(�)V

s+2
+ k2(s)

�
V

s+1
+ + V

s
+ + U

s
+
�

.
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Then, for N − u ≤ 0, we obtain that
�

Ω

[χu(N − u)(u − v) − χu(N − u)(u − φ1(u, u))]Us−1
+

≤ −χ(1 − �)

�

Ω

U
s+2
+ + k(�)

�

Ω

V
s+2
+ + k(s)

�

Ω

V
s+1
+ + V

s
+ + U

s
+. (3.16)

Case II. N − u > 0 and u + u ≤ N .
In this case we have

u(N − u) > 0, N − U − 2u = N − u − u ≤ 0, φ1 = u

and

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − (v − φ1)U

s−1
+ )

= U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − VU

s−1
+ ). (3.17)

As in Case I, we know that U+U = U
2
+ and therefore

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − VU

s−1
+ )

= U
s
+(N − U+ − 2u)(U+ − V ) + u(N − u)(U

s
+ − VU

s−1
+ ).

The term −U
s
+(N − U+ − 2u)V is treated in the following way

U
s
+(N − U+ − 2u)(U+ − V ) = U

s
+(N − U+ − 2u)(U+ − V + u − u)

≤ U
s
+(N − U+ − 2u)(U+ + V− + u − u).

Since N − u ≥ 0 we have that the last term in (3.17) is bound by

u(N − u)(U
s
+ − VU

s−1
+ ) ≤ u(N − u)(U

s
+ + V−U

s−1
+ )

and therefore

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − VU

s−1
+ )

≤ U
s
+(N − U+ − 2u)(U+ + V− + u − u) + u(N − u)(U

s
+ + V−U

s−1
+ ).

Notice that since N − U+ − 2u ≤ N and u − u ≤ N we have that

U
s
+(N − U+ − 2u)(V− + u − u) ≤ k1(U

s
+ + U

s
+V−).

Thanks to the positivity of u and u + u ≤ N we have that U+ ≤ N which implies

k1(U
s
+ + U

s
+V−) ≤ k1(U

s
+ + NU

s−1
+ V−)

and

U
s
+(N − U+ − 2u)U+ ≤ −U

s+2
+ + N2U

s
+.

To conclude this case, we proceed as in case I. By (3.15), it results
�

Ω

[χu(N − u)(u − v) − χu(N − u)(u − φ1(u, u))]Us−1
+ ≤ −χ

�

Ω

U
s+2
+ + k

�

Ω

U
s
+ + V

s
−, (3.18)

for some positive constant k.
Case III. N − u > 0 and u + u ≥ N .

In this case, we have u(N − u) > 0 and φ1 = u, then:

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − (v − φ1)U

s−1
+ )

= U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − VU

s−1
+ ).

As in previous cases we use the equality U+U = U
2
+ to obtain

U
s
+(N − U − 2u)(U − V ) + u(N − u)(U

s
+ − VU

s−1
+ )

= U
s
+(N − U+ − 2u)(U+ − V ) + u(N − u)(U

s
+ − VU

s−1
+ ).
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Notice that (N − U+ − 2u) = (N − u − u) ≤ 0 and the term

−U
s
+(N − U+ − 2u)V

in the above inequality is bounded as in case I, i.e.

−U
s
+(N − U+ − 2u)V ≤ −U

s
+(N − U+ − 2u)V+.

Thanks to Young’s inequality we know that

V+U
s
+ ≤ k(s)V

s+1
+ + U

s+1
+

and we obtain

U
s
+(N − U+ − 2u)(U+ − V+) = (N − U+ − 2u)(U

s+1
+ − V+U

s
+)

≤ (N − U+ − 2u)(U
s+1
+ − U

s+1
+ − k(s)V

s+1
+ ) ≤ k2(s)(V

s+1
+ + U+V

s+1
+ )

≤ k(V
s+1
+ + U

s
+ + k2V

s s+1
s−1

+ ). (3.19)

The remaining term −u(N − u)VU
s−1
+ is treated as in case II, i.e.

−u(N − u)(U
s
+ − VU

s−1
+ ) ≤ u(N − u)(U

s
+ + V−U

s−1
+ ).

Thanks to the assumption u < N and Young’s inequality we obtain

u(N − u)(U
s
+ + V−U

s−1
+ ) ≤ N

4
(U

s
+ + V−U

s−1
+ )

≤ k(s)(U
s
+ + V s

−). (3.20)

Thanks to (3.19) and (3.20), we obtain after integration over Ω
�

Ω

[χu(N − u)(u − v) − χu(N − u)(u − φ1(u, u))]Us−1
+ ≤ k

�

Ω

V
s+1
+ + V

s s+1
s−1

+ + U
s
+ + V

s
−. (3.21)

Therefore, as a consequence of (3.16), (3.18) and (3.21), the proof of the lemma ends. �

Lemma 3.4. For any � > 0 arbitrary there exists a positive constant k(�) such that the following inequality holds:

− χ

�

Ω

U
s−1
+ (N − 2u)∇U∇v ≤ χ

�
2

s + 1
+ �

� �

Ω

U
s+2
+ + (a2 + �)

�

Ω

U
s+1
+

+ k(�)
�

Ω

(U
s
+ + V s+2

− + V s+1
− + V s

−) (3.22)

for

a2 := χ sup
t>0

�
2u − N

s
+ 2(u − u)

s + 1

�
.

Proof. Wemultiply the term −χ(N − 2u)∇U∇v by U
s−1
+ to deduce that

−χU
s−1
+ (N − 2u)∇U∇v = −χU

s−1
+ (N − 2U+ − 2u)∇U+∇v

= −χ∇
��

N
s

− 2u
s

�
U

s
+ − 2

s + 1
U

s+1
+

�
∇v.

After space integration, we obtain

− χ

�

Ω

∇
��

N
s

− 2u
s

�
U

s
+ − 2

s + 1
U

s+1
+

�
∇v = χ

�

Ω

��
N
s

− 2u
s

�
U

s
+ − 2

s + 1
U

s+1
+

�
�v

= −χ

�

Ω

��
N
s

− 2u
s

�
U

s
+ − 2

s + 1
U

s+1
+

�
(u − v)

= −χ

�

Ω

�
N
s

− 2u
s

− 2
s + 1

U+

�
U

s
+(u − v). (3.23)

We consider two different cases:
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Case 1. N
s − 2u

s − 2
s+1U+ ≥ 0.

In that case we have

−U
s
+(u − v) = −U

s
+(U − V ) ≤ −

�
U

s+1
+ − U

s
+V+

�

since

−U
s+1
+ + U

s
+V+ ≤ −U

s+1
+ + U

s+1
+ + k(s)V

s+1
+

and 2 u−u
s+1 < N

s , we deduce

− χ

�
N
s

− 2u
s

− 2
s + 1

(u − u)
�
U

s
+(u − v) ≤ k(s)V

s+1
+ . (3.24)

Case 2. N
s − 2u

s − 2
s+1U+ ≤ 0.

In that case we have that

−χ

�
N
s

− 2u
s

− 2
s + 1

U
�
U

s
+(u − v) ≤ −χ

�
N
s

− 2u
s

− 2
s + 1

U
�
U

s
+

�
U+ + V− + u − u

�

≤ a1U
s+2
+ + a2U

s+1
+ + a3U

s
+ + a1V−U

s+1
+ + a2V−U

s
+,

for

a1 := 2χ
s + 1

; a2 := χ sup
t>0

�
2u − N

s
+ 2(u − u)

s + 1

�

and

a3 := χ sup
t>0

�
N
s

− 2u
s

�
(u − u).

Notice that, thanks to Hölder Inequality we have

− χ

�
N
s

− 2u
s

− 2
s + 1

U
�
U

s
+(u − v) ≤ χ

�
2

s + 1
+ �

�
U

s+2
+ + (a2 + �)U

s+1
+

+ k(�)(U
s
+ + V s+2

− + V s+1
− + V s

. ). (3.25)

After integration the proof of the lemma is complete. �

End of the proof of Theorem 3.1
Notice that, by assumption (1.6), we have

�

Ω

(g(u) − g(u))U
s−1
+ ≤ λ

�

Ω

U
s
+. (3.26)

Then, thanks to (3.12), (3.22) and (3.26), Eq. (3.6) becomes

1
s

d
dt

�

Ω

U
s
+ + (s − 1)

�

Ω

U
s−2
+ |∇U+|2 ≤ χ

�
2

s + 1
− 1 + 2�

� �

Ω

U
s+2
+ + (a2 + �)

�

Ω

U
s+1
+

+ k(�)
�

Ω

U
s
+ + k(�)

�

j∈J

�

Ω

V
j
+ + V j

− (3.27)

for J := {s s+1
s−1 , s + 2, s + 1, s}.

We notice that, for s > n
2 and thanks to Lemma 3.2

�

Ω

V
j
+ ≤ C(s, Ω)

����

�

Ω

U
s
+

����

j
s

and
�

Ω

V
j
− ≤ C(s, Ω)

����

�

Ω

U
s
−

����

j
s
.

We take now

� := 1
4

and s ≥ 7, as in (3.5), from (3.27) we have
1
s

d
dt

�

Ω

U
s
+ ≤ −χ

2

�

Ω

U
s+2
+ + k1

�

Ω

U
s+1
+ + k2

�

j∈J

(�U+�j
Ls(Ω) + �U−�j

Ls(Ω)).
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Since

−χ

2
U

s+2
+ + k1U

s+1
+ ≤ 2k21

χ
U

s
+

we obtain

1
s

d
dt

�

Ω

U
s
+ ≤ k3

�

j∈J

(�U+�j
Ls(Ω) + �U−�j

Ls(Ω)). (3.28)

Notice that j ≥ s for any j ∈ J . In the same way we prove

1
s

d
dt

�

Ω

U
s
− ≤ k3

�

j∈J

(�U+�j
Ls(Ω) + �U−�j

Ls(Ω)). (3.29)

We add both expressions to conclude

1
s

d
dt

(�U+�s
Ls + �U−�s

Ls) ≤ 2k3
�

j∈J

(�U+�j
Ls + �U−�j

Ls).

Since j ≥ s for any j ∈ J , Gronwall’s lemma ends the proof of Theorem 3.1. �

4. Global existence and uniqueness of classical solutions

Taking into account the results obtained in Theorem 3.1, Lemmas 2.2 and 2.3, to have the complete proof of Theorem 1.1
we only need the global existence and uniqueness of solutions of (1.3). Consequently, we establish the existence of smooth
solutions to (1.3) as follows:

Theorem 4.1. We consider u0 ∈ C2,α(Ω), for some α ∈ (0, 1) and we assume that there exists β , such that

0 < β ≤ u0 for x ∈ Ω.

Then, for any T ≤ ∞ there exists a unique classical solution to (1.3)

u, v ∈ C
2+α,1+ α

2
x,t (ΩT ).

Proof. The existence proof follows a standard fixed point argument in C0(ΩT ) for T < ∞. Let S be defined as follows:

S :=
�
u ∈ C0(ΩT ) such that 0 ≤ u ≤ M

�
,

whereM := max{1,N, sup{u0}}. Notice that S is a bounded set in C0(ΩT ). Let J : S → C0(ΩT ) defined by

J(ũ) = u,

where u satisfies the equation

ut − �u = −χ(ũ(N − ũ)∇ṽ) · ∇u + χu(N − u)(u − ṽ) + λg(u), (4.1)

and ṽ is the solution to the problem

− �ṽ + ṽ = ũ, x ∈ Ω. (4.2)

Notice that ṽ ∈ W 2,p(Ω) for p < ∞, see Agmon, Douglis and Nirenberg [13]. Thanks to Theorem 3.1 and Lemma 2.1,
standard theory gives us

u ∈ Yp := Lp((0, T );W 2,p(Ω)) ∩ W 1,p((0, T ); Lp(Ω)), for p < ∞.

After routinary computations we see that

J : S → Lp((0, T );W 2,p(Ω)) ∩ W 1,p((0, T ); Lp(Ω))

is a continuous function. Since Yp is compactly embedded in C0(ΩT ), J(S) is a relatively compact set in C0(ΩT ) and there
exists at least a fixed point of J in S, the solution to the problem. Standard arguments in parabolic equations shows
uniqueness of solutions. Since u ∈ Yp we have that u ∈ C

α, α
2

x,t (ΩT ) and then v ∈ C
2+α, α

2
x,t (ΩT ) therefore we have that

∇v, χu(N − u)(u − v) + g(u) ∈ C
α, α

2
x,t (ΩT )



M. Negreanu, J. Ignacio Tello / Nonlinear Analysis 80 (2013) 1–13 13

since u0 ∈ C2,α(Ω) we have that, by linear parabolic theory (see for instance [14, Theorem IV. 5.3, p. 320])

u ∈ C
2+α,1+ α

2
x,t (ΩT )

and also have

v ∈ C
2+α,1+ α

2
x,t (ΩT ).

The proof ends taking limits as T → ∞. �

Corollary 4.2. • If N ≤ 1 the steady state (u, v) ∈ [L∞(Ω)]2 of (1.3) satisfying

0 ≤ u, 0 ≤ v, (4.3)

are given by

(u, v) = (0, 0) or (u, v) = (1, 1).

• If N > 1 and λN > 2χ , the unique steady state (u, v) ∈ [L∞(Ω)]2 of (1.3) satisfying

0 < u, 0 < v, (4.4)

is given by

(u, v) = (1, 1).

Proof. We consider first the case N ≤ 1, then, after integration over Ω in the first equation of (1.3) we have
�

Ω

u =
�

Ω

u2. (4.5)

Lemma 2.2 and Theorem 3.1 show that u ≤ 1 and thanks to (4.3) and (4.5) the proof ends for the case N ≤ 1.
In a similar way we prove the second case. �
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