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In this paper we study the numerical resolution of a reinforced random walk model arising
in haptotaxis and the stabilization of solutions. The model consists of a system of two
differential equations, one parabolic equation with a second order non-linear term
(haptotaxis term) coupled to an ODE in a bounded two dimensional domain. We assume
radial symmetry of the solutions. The scheme of resolution is based on the application of
the characteristics method together with a finite element one. We present some numerical
simulations which illustrate some features of the numerical stabilization of solutions.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

A characteristic feature of living organisms is that they respond to the environment in search of food and a reproductive
mate, which is called taxis. Corresponding to the type of the external stimulus, various types of taxis are defined, such as
haptotaxis, chemotaxis and others.

Chemotaxis is a process whereby living organisms respond to chemical substance by moving toward higher or lower con-
centrations of the chemical substance, or by aggregating or dispersing. Haptotaxis is closely related to chemotaxis, as it is the
directional motility or growth of cells following gradient of cellular adhesion sites or substrate-bound chemoattractants. The
gradient of the chemical signal in this case is expressed or bound on a surface, in contrast to the classical model of chemo-
taxis, in which gradient develops in a soluble fluid. These gradients are naturally present in the extracellular matrix of the
body during process such as angiogenesis.

In the majority of the theoretical analysis the signal is transported by diffusion, convection or by some other means. The
classical chemotaxis equation was introduced by [11], after [15], as the first model to describe the aggregation of slime mold
amoebae due to an attractive chemical substance. The model involves the density distribution of the bacteria u and the
chemical concentration v in a coupled system of partial differential equations
ut ¼ Du� divðuvðvÞrvÞ;
v t � Dv ¼ gðu; vÞ;
where ut ¼ @u
@t and v t ¼ @v

@t .
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However, in some chemotaxis phenomena, the diffusion of the chemical attractant is ignorable, the walker seems to mod-
ify the environment in a strictly local manner and there is little or no transport of the chemical substance.

In an attempt to gain understanding of the mechanisms that causes the aggregation of myxobacteria, which slide over
slime trails thereby reinforcing the trails, [14] proposed a model based on reinforced random walks. The system of equations
derived by Othmer and Stevens is the following:
ut ¼ divðDru� uvðvÞrvÞ; ð1Þ

v t ¼ gðu;vÞ; ð2Þ
where D is the diffusion constant and vðvÞ is the chemotactic sensitivity of the bacteria. Both, vðvÞ and gðu;vÞ depend on the
nature of the interaction between the bacteria and the chemical stimulus.

[9] studied a reinforced random walk model in haptotaxis. They considered system 1,2 in a bounded domain X � Rn with
boundary condition:
D
@u
@n
� uvðvÞ @v

@n

� �
¼ 0; x 2 @X; t > 0; ð3Þ
where @u
@n and @v

@n are outward normal derivatives, the random motility D is assumed to be constant and v measures the hapto-
tactic sensitivity. The function gðu;vÞ is assumed to be of the form
gðu;vÞ ¼ ehðu;vÞ/ðu;vÞ;

where, for some constants 0 6 u1 6 u2;v1 < v2, it is satisfied
/ðu; vÞ > 0; if u1 6 u 6 u2; v1 6 v 6 v2;

and ehðu1; v1Þ ¼ ehðu2; v2Þ:
This problem describes the evolution of a biological species moving along a gradient of the concentration of a second species.
Notice that in the case of chemotaxis systems, the second species diffuses in a higher or lower velocity, depending on the
process, and it is modelized by a parabolic or elliptic equation.

This kind of equations, containing haptotaxis terms, arise for example in modeling cancer process, as angiogenesis, see for
instance [1,12]. These problems also present mathematical challenges whereby several authors have been interested, as the
literature shows, see for example [9,13,16], and references therein.

From the mathematical point of view, in [9], it is proved that any stationary state ðu�;v�Þ of 1,2 is asymptotically stable
provided:
g ¼ eh/; / > 0; ehp > 0; pvehp þ ehw < 0 at ðu�; v�Þ: ð4Þ
If (4) is satisfied, then any solution of 1,2, in a bounded domain with boundary condition (3), and initial values near ðu�;v�Þ,
exists for all t > 0 and converges as t !1 to a nearby stationary solution ðu;vÞ. This assertion means that under assumption
(4), solutions tend to an uniform distribution, provided the initial distribution is nearly uniform.

The question about what the behavior of solutions could be when condition (4) is not satisfied was the motivation for the
study presented in this paper.

This paper is involved with the numerical resolution of a particular case of system 1,2, considered in [9] as an example. To
precise, we shall consider the following parabolic-ODE system posed in a bounded domain X � R2,
ut ¼ div ru� u
b

aþ bvrv
� �� �

; x 2 X; t > 0; ð5Þ

v t ¼ u� lhðvÞ; x 2 X; t > 0; ð6Þ
that is, vðvÞ ¼ b
aþbv, with l > 0;a > 0 and b > 0, complemented with the boundary condition
@u
@n
� u

b
aþ bv

@v
@n

� �
¼ 0; x 2 @X; t > 0; ð7Þ
and initial data
uðx;0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ; x 2 X: ð8Þ
For this particular case, if assumption
vðvÞhðvÞ < h0ðvÞ for u1 6 u 6 u2; v1 6 v 6 v2; ð9Þ
with v2 � v1 small enough, is verified, then assumption (4) is also satisfied (see [9]).
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It is the purpose of this paper to solve numerically the system (5)–(8) in a bounded two dimensional domain when radial
symmetry of solutions is assumed in order to answer in a way to the question about what could be the behavior of solution
when (4) is not satisfied.

Regarding the numerical resolution of chemotaxis or haptotaxis models, it could be said that the finite-volume and finite-
difference methods, or a combination of the two have been widely employed. These methods usually used a second order
upwind scheme which is positivity preserving. These kind of methods are developed and used for example in [7]. In [10],
it is used the method of lines to deal with taxis-diffusion–reaction models.

In Section 2, we describe the scheme of resolution, which is based on a combination of the characteristics method (as an
alternative to the upwind technique) and the finite element method. The method here employed follows the ideas of [4]. In
Section 3, we present some numerical results which illustrate the stabilization of solutions when (9), and therefore (4), is
satisfied. We also show the results concerning two cases for which (9) is not satisfied (neither (4)). We shall see one simu-
lation where the stabilization of solutions takes place and other where this does not occur. Finally, in Section 4 we comment
some conclusions.

2. Numerical analysis of the radially symmetrical case in 2D

This section deals with the numerical scheme we have employed to solve numerically the system (5)–(8) when it is
assumed that solutions are radially symmetric. In this case, the problem reduces to one of only one spatial variable, which
is the radius r. Without losing generality, we shall assume that r 2 ½0;1�.

The numerical resolution of the model and subsequence numerical simulations would allow us to study the stabilization
of solutions.

To precise, the problem we intent to solve numerically in this section is the following:
ut ¼
1
r
@

@r
r ur � u

b
aþ bv v r

� �� �
; ð10Þ

v t ¼ u� lhðvÞ; ð11Þ
where ur ¼ @u
@r and the same for v, complemented with appropriated initial and boundary conditions which will be mentioned

later.
Due to the hyperbolic feature of Eq. (10), we opt for using a scheme which combines the method of characteristics and the

reformulation of the convection term in (10) in terms of the total derivative with the finite element one (see [4,8] and ref-
erences therein). We shall assume that the variables satisfy some regularity requirements that allow us to develop the
numerical scheme. This technique has been successfully used in other fields (see for example [2,5,6]).

Next, we describe the numerical scheme. The equation for u, which in an expanded form is
ut ¼ urr þ
1
r
� bv r

aþ bv

� �
ur þ

b2u

ðaþ bvÞ2
v2

r �
bu

rðaþ bvÞv r �
bu

aþ bv v rr; ð12Þ
can be written in the following form,
ut þ Aur ¼ urr þ B; ð13Þ
where
A ¼ �1
r
þ bv r

aþ bv and B ¼ b2u

ðaþ bvÞ2
v2

r �
bu

rðaþ bvÞv r �
bu

aþ bv v rr: ð14Þ
Consider the total derivative Du
Dt defined as follows:
Du
Dt
¼ ut þ Aur þ ur � A;
where A, which has been defined in (14), would be an artificial velocity field. Notice that
r � A ¼ 1
r
@

@r
r

bv r

aþ bv �
1
r

� �� �
¼ bv r

rðaþ bvÞ þ
bv rr

aþ bv �
b2v r

ðaþ bvÞ2
; ð15Þ
hence,
Du
Dt
¼ urr þ Bþ ur � A ¼ urr: ð16Þ
Note that when A is actually the velocity of an incompressible fluid, thenr � A is null. In this problem, A is an artificial veloc-
ity andr � A is not necessary null so we will have to take it into consideration and compute it. Next, we shall follow the nota-
tion and ideas presented in [4].

In our particular problem we shall consider the total derivative of Ju, given by
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DJu
Dt
ðr; tÞ ¼ @

@s
Jðr; t; sÞuðXðr; t; sÞ; sÞ½ �s¼t;
where J is the Jacobian associated with the change of coordinates from Eulerian to Lagrangian coordinates. The Jacobian
Jðr; t; sÞ of the change of coordinates is defined as follows
Jðr; t; sÞ :¼ 1�
Z t

s
r � AðXðr; t; sÞ; sÞds: ð17Þ
Note that the presence of J arises from the application of the characteristics method when one considers the conservative
form for the convection term. We shall denote the characteristics X by Xðr; t; sÞ, as r and t are parameters for the solution
X of
dXðr;t;sÞ
ds ¼ AðXðr; t; sÞ; sÞ

Xðr; t; tÞ ¼ r
;

(
ð18Þ
which means that Xðr; t; �Þ should be the particle path that passes at r at time t. The system (18) is backward in time but when
A is regular enough, say Lipschitz continuous, it has a unique solution.

Then, we obtain that
DJu
Dt
¼ Jsuþ J urXs þ usð Þ½ �s¼t ¼ ut þrðuAÞ;
where Js ¼ @J
@s and the same for X and u. Therefore, the problem we have to solve numerically for the variable u turns out to be:
DJu
Dt
¼ urr; 0 < t 6 T; r 2 ð0;1Þ; ð19Þ

uðr;0Þ ¼ u0ðrÞ; r 2 ½0;1�; ð20Þ
where the initial condition u0ðrÞ is assumed to be a regular function. Due to the diffusion term in (19) we need to prescribe
boundary conditions. In this case, we consider the following boundary condition urð0; tÞ ¼ urð1; tÞ ¼ 0;0 < t 6 T. The prob-
lem for the variable v is given by (11) complemented with the initial condition
vðr;0Þ ¼ v0ðrÞ; r 2 ½0;1�;
with v0ðrÞ also a regular function. In addition we shall assume that vrð0; tÞ ¼ v rð1; tÞ ¼ 0; 0 < t 6 T , in the computation of the
characteristics and J, which is in accordance with Eq. (11) and the boundary condition (7) of the original problem.

In order to solve (19) complemented with the corresponding initial data and boundary conditions, we shall use a time
marching scheme. Hence, let P > 1, be a natural number and let Dt ¼ T=P be the fixed time step of discretization. To discret-
ize in time, we used the following formula for each tnþ1 ¼ ðnþ 1ÞDt, with n ¼ 0; . . . ; P � 1:
DJu
Dt
ðr; tnþ1Þ ’;

½Jnþ1ðrÞuðXðr; tnþ1; tnþ1Þ; tnþ1Þ � JnðrÞuðXðr; tnþ1; tnÞ; tnÞ�=Dt; ð21Þ
where JnðrÞ ¼ Jðr; tnþ1; tnÞ and Jnþ1ðrÞ ¼ Jðr; tnþ1; tnþ1Þ. Note that if we consider t ¼ tnþ1 in (17), (18), we get that
Jnþ1 ¼ Jðr; tnþ1; tnþ1Þ ¼ 1; Xðr; tnþ1; tnþ1Þ ¼ r; ð22Þ
therefore (21) becomes
DJu
Dt
ðr; tnþ1Þ ’ ½unþ1 � JnðrÞunðXnðrÞÞ�=Dt; ð23Þ
where unðrÞ ¼ uðr; tnÞ and XnðrÞ ¼ Xðr; tnþ1; tnÞ is the solution of (18) that will be in r at time tnþ1.
As a result of the discretization with respect to time, we have that for each step in time tnþ1 we have to solve a stationary

problem. In particular we shall consider the following problem for the unknown unþ1ðrÞ:
unþ1 � Dtunþ1
rr � JnðrÞunðXnðrÞÞ ¼ 0; r 2 ð0;1Þ; ð24Þ

unþ1
r ð0Þ ¼ unþ1

r ð1Þ ¼ 0; ð25Þ
where JnðrÞ and unðXnðrÞÞ are known as they have been computed in the previous step in time. The variational formulation
corresponding to the problem (24), (25) is the following
Z 1

0
unþ1w� Dtunþ1

r wr � JnðrÞunðXnðrÞÞw
� �

dr ¼ 0; 8w 2 H1ð0;1Þ: ð26Þ
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In order to discretize the problem (26) with respect to the spatial coordinate r, we use Lagrange linear finite elements. After
applying some quadrature formula for integration and some algebraic operations, we obtain a linear system of equations for
the unknowns unþ1

i ¼ unþ1ðriÞ, and i ¼ 0;1;2; ::N, being frig the partition of the domain ½0;1� considering Dr as the step for the
space discretization. The matrix of coefficients associated to the system is a band tri-diagonal one. The system is solved by
using the Thomas algorithm.

Finally, once that we have updated the values for u, we pass to update the ones for v. In this case, we consider the fol-
lowing finite difference scheme,
Fig. 1
vnþ1
i � vn

i

Dt
¼ unþ1

i � lhðvn
i Þ; ð27Þ
therefore,
vnþ1
i ¼ vn

i þ Dtðunþ1
i � lhðvn

i ÞÞ; for i ¼ 0;1;2; ::N: ð28Þ
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. Results obtained with u0ðrÞ ¼ v0ðrÞ ¼ 1þ 0:005e�r3 , vðvÞ ¼ 1
1þv, hðvÞ ¼ v and l ¼ 1, that is v t ¼ u� v . In this case assumption (9) is satisfied.
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3. Numerical simulations in the radially symmetric case

In this section we shall present some numerical simulations obtained with the scheme of resolution described in the pre-
vious section in order to illustrate the numerical stabilization of solutions for different hðvÞ. It is the purpose of these sim-
ulations to show the well performance of the method as we are able to reproduce the expected behavior of solutions to the
problem considered in [9], Example 1, when assumption (9) is satisfied, and on the other side to bring some insight about
possible behaviors of solutions when it is not. In this occasion we are not mainly concerned with the obtention of biologically
meaningful solutions not with modeling considerations. However, we want to highlight that the algorithm can be used in
more general scenarios regarding the choices for the expressions of v and gðu;vÞ and therefore, it could provide an effective
way of selecting expressions leading to desirable profiles for the solutions from the biomedical point of view.

The problem has been solved in the interval r 2 ½0;1�. The steps in time and space used in the simulations presented in
Figs. 1, 3 and 4 are Dt ¼ 10�4 and Dr ¼ 10�2. It has been performed a great number of numerical simulations, regarding initial
data and expressions for v and gðu;vÞ, but for the sake of brevity we only present some of them concerned with the stabil-
ization problem considered in this paper. We have chosen three cases based on the choice of hðvÞ. One case, presented in
Fig. 1, illustrates how the stabilization of the solution takes place as expected when assumption (9) is satisfied. A second case,
presented in Fig. 3, shows how stabilization of solutions is possible despite of the fact that assumption (9) is not satisfied.
And finally, a third case, presented in Fig. 4, in which assumption (9) is not satisfied and the stabilization of the solution does
not take place.

Regarding the initial data, we consider in all the simulations shown here the same u0 and v0, to precise
Fig. 2.
we pre
u0ðrÞ ¼ v0ðrÞ ¼ 1þ 0:005e�r3
; ð29Þ
but a number of simulations with different profiles for the initial data u0 and v0 have been performed. According to our
numerical results we could conjecture that it is the expression of hðvÞ the one which plays a determinant role in order to
obtain the stabilization of solutions or not.

In Fig. 1, we present the numerical results obtained with vðvÞ ¼ 1
1þv ;l ¼ 1 and hðvÞ ¼ v . With this choice, assumption (9)

is satisfied. One can observe that the stabilization of solution takes place, and therefore we obtain that after a certain
time T that u ¼ v ¼ C (=1.005270584662) for t P T . We associate to each time t an error defined in this case by
eðt; rÞ ¼ uðt; rÞ � vðt; rÞ in order to know how far we are from the constant stationary values.

In order to illustrate the well performance of the numerical scheme we present the results obtained for u and v in the case
considered in Fig. 1 for different steps in time and space for t ¼ 0:1 at r ¼ 0 and r ¼ 1 in Table 1 and 2, respectively. Notice
that the solution is decreasing so the values are between the ones in r ¼ 0 and r ¼ 1.

Note also that the stability of the numerical scheme depends on A (related to the convection term) whose values depend
at the same time on the step of the discretization in space. The values of Aðt; rÞ do not change significantly with respect to
time for fixed steps in time and space as it can be observed in Fig. 2 (left).

In Fig. 3, we present the numerical results obtained with the same initial data considered in Fig. 1, the same expression for
v;l ¼ 1 and hðvÞ ¼ v þ 1. In this case, assumption (9) is not satisfied, however the solution stabilizes to constant values
which satisfy u ¼ v þ 1, in particular these values are u ¼ 0 and v ¼ �1. The variable error mentioned in the graphics is
defined by eðt; rÞ ¼ uðt; rÞ � ðvðt; rÞ þ 1Þ.

In Fig. 4, we present the numerical results obtained with the same initial data and v considered in Figs. 1 and 3, just to

show that the stabilization phenomenon mainly depends on the expression of hðvÞ. In this third case, hðvÞ ¼ e
1

vþ1 so assump-
tion (9) is not satisfied, and we obtain the solution does not stabilize to constant values and even there is a time t�, such that
the numerical solution seems to present a kind of numerical blow up.
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4. Discussion and conclusions

In this paper we study the numerical resolution of a system of two differential equations, one parabolic equation with
second order non-linear terms (haptotaxis) and an ODE. The problem describes the evolution of a biological species moving
along a gradient of the concentration of a second species. The system is closely related with chemotaxis systems, where the
second species diffuses in a higher or lower velocity depending on the process and it is modelized by parabolic or elliptic
equations.

Similar systems, containing haptotaxis terms, are used to describe cancer processes, as angiogenesis (see for example
[1,12]). The problem also presents mathematical challenges whereby several authors have been interested, as the literature
shows, see for instance [9,13,16], and references therein.

In [9], the system (1)–(3) is studied under assumption (4), and it is established that any stationary state ðu�;v�Þ is asymp-
totically stable. If (4) is satisfied, then any solution of (1)–(3) in a bounded domain, with initial values near ðu�;v�Þ, exists for
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Fig. 4. Results obtained with u0ðrÞ ¼ v0ðrÞ ¼ 1þ 0:005e�r3 , vðvÞ ¼ 1
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1
vþ1 and l ¼ 1, that is v t ¼ u� e

1
vþ1 . In this case assumption (9) is not satisfied.
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Table 2
Results obtained for u and v with u0ðrÞ ¼ v0ðrÞ ¼ 1þ 0:005e�r3 , vðvÞ ¼ 1

1þv, hðvÞ ¼ v and l ¼ 1, for different
steps in time Dt and space Dr for t ¼ 0:1 at r ¼ 1.

t ¼ 0:1; r ¼ 1 u v

Dt ¼ 1e� 04;Dr ¼ 1e� 2 1.0034998369 1.0019458848
Dt ¼ 1e� 06;Dr ¼ 5e� 3 1.0035001391 1.0019457786
Dt ¼ 1e� 06;Dr ¼ 2e� 3 1.0035001888 1.0019457409
Dt ¼ 1e� 06;Dr ¼ 1e� 3 1.0035002060 1.0019457284

Table 1
Results obtained for u and v with u0ðrÞ ¼ v0ðrÞ ¼ 1þ 0:005e�r3 ,
vðvÞ ¼ 1

1þv, hðvÞ ¼ v and l ¼ 1, for different steps in time Dt and space
Dr for t ¼ 0:1 at r ¼ 0.

t ¼ 0:1; r ¼ 0 u v

Dt ¼ 1e� 04;Dr ¼ 1e� 2 1.0049263207 1.0049956217
Dt ¼ 1e� 06;Dr ¼ 5e� 3 1.0049274942 1.0049957621
Dt ¼ 1e� 06;Dr ¼ 2e� 3 1.0049274269 1.0049957564
Dt ¼ 1e� 06;Dr ¼ 1e� 3 1.0049272392 1.0049957383
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all t > 0 and converges as t !1 to a nearby stationary solution ðu;vÞ. Hence, under assumption (4), provided the initial dis-
tribution is nearly uniform, solutions tend to an uniform distribution.

A natural question is, if assumption (4) is not satisfied, how do the solutions behave? do we expect global existence or
finite time blow up? is assumption (4) a necessary condition to have stability? Such questions have been the main motiva-
tion of our work.

As expected, the numerical simulations show the stabilization of solutions to the problem with radial symmetry when the
assumption (4) is satisfied (in particular, it is satisfied (9), see Fig. 1). If assumption (4) (in particular (9)) is not satisfied
(Figs. 3 and 4) then the solutions can stabilize or not depending on the expression of hðvÞ in (11).

In Fig. 3, the solution stabilize to constant values for u and v, so, the numerical simulations shows that assumption (4) is
not a necessary assumption to obtain stability. Fig. 4 shows ‘‘numerical’’ blow up, which induces to conjecture that for some
particular profiles of g blow up occurs.

The numerical method described in this paper follows the ideas presented in [4] and the algorithm is based on the refor-
mulation of the convection term in (10), the equation for u, in terms of the total derivative and the application of the char-
acteristics method combined with a finite element one. This method is presented as an alternative to spectral methods,
upwind algorithms and finite volume methods, which prove to be very effective to tackle models of chemotaxis-haptotaxis
type (see for example [3,7] and references therein).

We would like to remark that the numerical method described here can be easily generalized and applied to other def-
initions of the haptotactic sensitivity v and other expressions of gðu;vÞ, not included here for the sake of brevity. The method
proves to be efficient and it reproduces the behavior expected in cases for which analytical results are known. So, the numer-
ical method employed in this paper could be effectively used to obtain some insight about the behavior of solutions to the
problem considered in [9], Example 1, but also about the behavior of solutions to systems of similar kind.

This paper can be considered as the starting point of future research involved with the application of generalizations of
the scheme developed here to the study of fully 2D problems (no radial symmetry assumed) and problems which also
include chemotaxis terms. Notice that, if one wants to deal with biomedical applications and therefore to obtain biologically
admissible solutions then a more careful choice of the definitions for gðu;vÞ and v should be considered. In this occasion, we
were more concerned with bringing some light to the questions above mentioned and showing that according to the results
obtained with our numerical scheme, (4) is a sufficient condition but not necessary in order to obtain the stabilization of
solutions, than with the modeling or biomedical applications.
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