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We consider a system of differential equations modeling tumor angiogenesis. The system
consists of three equations: two parabolic equations with chemotactic terms to model
endothelial cells and tumor angiogenesis factors coupled to an ordinary differential equa-
tion which describes the evolution of the fibronectin concentration. We study global
existence of solutions and, under extra assumption on the initial data of the fibronectin
concentration we obtain that the homogeneous steady state is asymptotically stable.
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1. Introduction

Nowadays, many different issues related to the mathematical approach to the mo-
deling of cancer phenomena are proposed (see, for instance, Ref. 4). In this paper
we will focus on the analysis of a macroscopic model arising in tumor angiogenesis.
Angiogenesis is the physiological process that involves the formation of new blood
vessels from a pre-existing vascular network. Angiogenesis plays an important role
in the development of embryo, wound healing or tumor growth. During the tumor
growth angiogenesis provide extra nutrients to the tumor which allows the transition
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from a dormant tumor to a malignant one. Tumor induced angiogenesis starts when
cancer cells secrete a chemical signal known as tumor angiogenesis factors (TAFs).
TAFs diffuse in the extracellular matrix and arrive to the endothelial cells which
form the linings of the blood vessels. Then, TAFs bind to specific receptors of
the endothelial cells and activate them. Activated endothelial cells release enzymes
that degrade the basal membrane of the blood vessels to allow the migration of
endothelial cells following the gradients of TAF (chemotaxis). The endothelial cells
then proliferate into the surrounding matrix, interact with the components of the
matrix, in particular fibronectin and form solid sprouts connecting neighboring
vessels. Once the new capillary network penetrates the tumor more nutrients are
supplied to the tumor which grows further. See for instance the Ref. 16 for details.

The mathematical model we will consider is a small variation of the model pro-
posed in Ref. 3. As in Ref. 3 we will focus on three variable involved in tumor
angiogenesis, endothelial cells, TAF and fibronectin, a component of the extracel-
lular matrix that enhance cell adhesion to the matrix. Therefore we will take into
account the interactions between the endothelial cells, TAF and the extracellular
matrix. We denote by p the density of the endothelial cell, by c the density of TAF
and by w the density of fibronectin.

Endothelial cells. We assume that the motion of the endothelial cells is induced
mainly by the TAF and fibronectin. More precisely, endothelial cells move towards
the TAF gradients (chemotaxis) and towards the fibronectin gradients (haptotaxis).
In addition we assume that the endothelial cells diffuse into the extracellular matrix
and we will also consider the endothelial cells proliferation that it is described by
a logistic source. As a consequence the equation for the endothelial cell density is
given by

∂p

∂t
= div

(
dp∇p − p

(
α

1 + c
∇c + ρ∇w

))
+ λp(NS − p),

where dp is the diffusion coefficient that we assume to be constant, α and ρ are the
chemotaxis and haptotaxis coefficients respectively, λ is the proliferation rate and
NS is the saturation parameter.

Tumor angiogenic factors. The TAF diffuses into the surrounding tissue and
decays. Moreover there is a loss of TAF after binding to the endothelial cells. There-
fore we assume that the TAF concentration c satisfies the following equation:

∂c

∂t
= dc∆c − ηc − µpc,

where dc stands for the TAF diffusion coefficient, η is the decay rate and µ is a
positive constant.

Fibronectin. We assume that the fibronectin is produced by the endothelial cells
and there is also some uptake and binding of fibronectin to the endothelial cells.
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Therefore we derive the following equation:

∂w

∂t
= θp − γpw,

where γ and θ are positive constants.

In order to reduce number of parameters, we introduce the rescaled variables

t∗ = ηt, x∗ =
x

(dc/η)
1
2
, p∗ =

p

NS
, c∗ = c, w∗ =

γ

θ
w.

We define the following variables:

D =
dp

dc
, α∗ =

α

dc
, ρ∗ =

ρθ

γdc
,

λ∗ =
λNs

η
, µ∗ =

µNS

η
, γ∗ =

γNS

η
.

Dropping the asterisks we obtain the following system of partial differential
equations:

∂p

∂t
= div

(
D∇p − p

(
α

1 + c
∇c + ρ∇w

))
+ λp(1 − p), (1.1)

∂c

∂t
= ∆c − c − µpc, (1.2)

∂w

∂t
= γp(1 − w). (1.3)

We consider a bounded domain Ω ⊂ R
N with regular boundary ∂Ω and the follow-

ing boundary conditions:

D
∂p

∂n
− p

(
α

1 + c

∂c

∂n
+ ρ

∂w

∂n

)
= 0, (1.4)

∂c

∂n
= 0, (1.5)

where n stands for the outward normal vector field to Ω. The initial data

p(x, 0) = p0(x), w(x, 0) = w0(x), c(x, 0) = c0(x). (1.6)

In the following sections we assume

0 ≤ p0(x) ≤ p̄0, (1.7)

0 ≤ c0(x) ≤ c̄0, (1.8)

0 ≤ w0(x) ≤ w̄0, (1.9)
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p0(x) �= 0, (1.10)

(p0, w0, c0) ∈ (W 1,s(Ω))3 for s ∈ (max{2, N}, +∞). (1.11)

In Secs. 3 and 4 we also consider classical solutions and the following assumption
in the initial data is required

(p0, w0, c0) ∈ (C2,α(Ω̄))3 for some α ∈ (0, 1). (1.12)

Modeling angiogenesis in cancer has been treated by several authors in the last
two decades. Some mathematical models of angiogenesis existing in the scientific
literature consider systems of partial differential equations to model the process
(see Refs. 7 and 17 for details). The mathematical models of PDEs consider chemo-
tactic terms in one- or two-dimensional domains. Levine and Sleeman,13 Levine,
Sleeman and Nilsen-Hamilton14 and Othmer and Stevens20 consider a system of
PDEs using a probabilistic framework of reinforced random walks to obtain deter-
ministic models.

Anderson and Chaplain3 (see also Ref. 7) proposed a model of tumor induced
angiogenesis consisting of three equations: a parabolic equation to describe the
behavior of the endothelial cells with chemotaxis and haptotaxis term, and two
nonlinear ODEs to model the concentration of fibronectin denoted by w and TAFs
by c. Recently, systems of three PDEs modeling cancer invasion has been analyzed
by several authors. Tao and Wang in Ref. 24 have proved global existence for a
parabolic–elliptic–ode system with chemotaxis and haptotaxis terms and logistic
growth (see also Ref. 25 for the case of nonlinear diffusion). Tao and Cui23 also
show global existence for a parabolic–parabolic–ode system with logistic source.
More recently, in Ref. 9 Hillen, Painter and Winkler have proved the convergence
of a cancer invasion model to a chemotaxis model in one-dimensional domains.

The structure of the paper is as follows. In Sec. 2 we study the local existence
of solutions, under assumptions (1.7)–(1.12). After that we obtain appropriate esti-
mates of the solution that provide global existence for N = 1, 2 (see Theorem 3.1).
The most technical part of the proof is the L∞ estimate and it is based on an
iterative method. The steady states of the system are studied in Sec. 4. Section 5
is devoted to the asymptotic behavior of the solutions. The results are presented in
Theorem 5.1, where under extra assumptions on the initial data we prove that the
homogeneous state is asymptotically stable. In Sec. 6 we present some numerical
experiments. Finally, the last section is devoted to a brief discussion of the results.

2. Local Existence

During the manuscript, for the sake of clarity, proofs are done for (1.1)–(1.6) with
D = 1. We left to the reader the trivial changes that are needed for D > 0.

Theorem 2.1. Let the initial data be positive and (p0, c0, w0) ∈ (W 1,s(Ω))3 with
s ∈ (max{2, N},∞). Then, there exists a unique maximal positive solution to
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(1.1)–(1.6) satisfying

(p, c, w) ∈ C([0, Tmax), (W 1,s(Ω))3) ∩ C1((0, Tmax), ((W 1,s(Ω))′)2 × W 1,s(Ω)).

Moreover, if there exists a constant θ such that

‖(p(t), c(t), w(t))‖(W 1,s(Ω))3 ≤ θ(T ), 0 ≤ t ≤ T < ∞, t < Tmax,

then Tmax = +∞.

Proof. Let us consider the open set G ⊂ R
2 × R, defined by

G := (−δ, +∞)3.

We denote by a1 = a1(p, c, w) ∈ C∞(G,M2×2(R)) the matrix

a1 =

(
1 − αp

1+c

0 1

)

and by a2 ∈ C∞(G, R2) the vector

a2 = (0, ρp).

Let u = (p, c). We define the following differential operators

A1(u, w) = − ∂

∂x

(
a1 ∂

∂x
u

)
, A2(u, w) = − ∂

∂x

(
a2 ∂

∂x
w

)
,

and

B1(u, w)u = a1 ∂u

∂n
, B2(u, w)w = a2 ∂w

∂n
.

Let f1 = (λp(1−p),−c−µpc) and f2 = γp(1−w); then (1.1)–(1.5) can be written as


ut + A1(u, w)u + A2(u, w)w = f1(u, w) in Ω × (0, +∞),

wt = f2(u, w) in Ω × (0, +∞),

B1(u, w)u + B2(u, w)w = 0 on ∂Ω × (0, +∞).

Since the principal part of A1 with the boundary condition satisfies condition (iii)
of Remark 4.1(a) of Ref. 1, we can apply Theorem 6.4 of Ref. 1 to get the existence
of a maximal weak solution. Next the positivity of c and w is a consequence of a
standard maximum principle for parabolic equations. However, the positivity of p

demands an additional work, to this aim we introduce the functions

Hε(s) :=




0 if s ≥ 0,

s

ε
if −ε < s ≤ 0,

−1 if s ≤ −ε,

φε(s) :=




0 if s ≥ 0,

s2

2ε
if −ε < s ≤ 0,

−s − ε

2
if s ≤ −ε.
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Notice that φ′
ε = Hε, sHε(s) ≤ 2φε and

H ′
ε(s) :=




0 if s ≥ 0,

1
ε

if −ε < s ≤ 0,

0 if s ≤ −ε.

We multiply (1.1) by Hε(p) and after integration over Ω we obtain∫
Ω

ptHε(p) +
∫

Ω

H ′
ε(p)|∇p|2

=
∫

Ω

H ′
ε(p)p

(
α

1 + c
∇c + ρ∇w

)
· ∇p +

∫
Ω

Hε(p)λp(1 − p).

Since ∫
Ω

ptHε(p) =
d

dt

∫
Ω

φε(p),

∫
Ω

H ′
ε(p)p

α

1 + c
∇p · ∇c ≤ 1

4

∫
Ω

H ′
ε(p)|∇p|2 +

∫
Ω

H ′
ε(p)p2 α2

(1 + c)2
|∇c|2,

∫
Ω

H ′
ε(p)ρp∇p · ∇w ≤ 1

4

∫
Ω

H ′
ε(p)|∇p|2 +

∫
Ω

H ′
ε(p)p2ρ2|∇w|2,

Hε(p)λp(1 − p) ≤ 2λ(1 + δ)φε(p) = k0φε(p),

for some δ > 0. Therefore we have

d

dt

∫
Ω

φε(p) +
1
2

∫
Ω

H ′
ε(p)|∇p|2

≤
∫

Ω

H ′
ε(p)p2 α2|∇c|2

(1 + c)2
+
∫

Ω

H ′
ε(p)p2ρ2|∇w|2 + k0

∫
Ω

φε(p).

Since

0 ≤ H ′
ε(p)p2 ≤ ε

and c ≥ 0 we have

d

dt

∫
Ω

φε(p) ≤ εk1

[∫
Ω

|∇c|2 +
∫

Ω

|∇w|2
]

+ k0

∫
Ω

φε(p).

After integration over (0, t) for t < Tmax, we obtain∫
Ω

φε(p) ≤ εk1e
k0t

∫ t

0

e−k0τ

∫
Ω

(|∇c|2 + |∇w|2).

By definition of weak solution we know that c, w ∈ L2(0, t, W 1,2) therefore

εk1e
k0t

∫ t

0

e−k0τ

∫
Ω

(|∇c|2 + |∇w|2) ≤ εk2 for any t ∈ [0, Tmax),
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which implies ∫
Ω

φε(p) ≤ εk2.

Taking limits as ε goes to 0 we have
∫
Ω

φ0(p) = 0 which concludes the theorem.

Remark 2.1. Since p ∈ C((0, Tmax), W 1,s(Ω))∩C1((0, Tmax), (W 1,s(Ω))′) we have
that p ∈ C((0, Tmax), L∞(Ω)).

Remark 2.2. In the case N = 1 we can pick s = 2 because it satisfies W 1,2(Ω) ↪→
L∞(Ω) a condition that it is required to apply Theorem 6.4 of Ref. 1. We have not
included this case in the previous theorem in order to simplify the notation.

In order to conclude this section we show that if the initial data is sufficiently
regular and satisfies a compatibility condition then the weak solution is a classical
solution.

Theorem 2.2. Let s > N + 2, α = 1 − (N + 2)/s > 0 and assume that

(p, c, w) ∈ C([0, Tmax), (W 1,s(Ω))3) ∩ C1((0, Tmax), ((W 1,s(Ω))′)2 × W 1,s(Ω))

is a weak solution to (1.1)–(1.6). Then if (p0, w0, c0) ∈ (C2+α(Ω̄))3 and

∂p0

∂n
− p0

(
α

1 + c0

∂c0

∂n
+ ρ

∂w0

∂n

)
= 0,

∂c0

∂n
= 0 (2.1)

on ∂Ω × {0} then

(p, c, w) ∈ (C2+α,1+α/2(Ω̄ × [0, T ]))3

for any T < Tmax where Tmax is the maximal existence time for the weak solution.

Proof. The new variable z = e−ρwp satisfies

zt = ∆z + ρ∇w · ∇z − αz

1 + c
∆c − α

1 + c
∇z · ∇c

+
αz

(1 + c)2
|∇c|2 − ρz

1 + c
∇w · ∇c + h(z, w),

where h(z, w) := λz(1 − zeρw) − ργeρwz2(1 − w). By Theorem 9.1, Chap. IV of
Ref. 12 for q = s we know that

z ∈ W 2,1
s (Ω × (0, T )).

Therefore, the embedding

W 2,1
s (Ω × (0, T )) ↪→ C1+α,(1+α)/2(Ω̄ × [0, T ])
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entails that z(t) ∈ C1+α(Ω̄) for each T < Tmax. Since, wt = γze−ρw(1 − w) then

‖w(t)‖C1+α(Ω̄) ≤ ‖w0‖C1+α(Ω̄) + γ

∫ t

0

‖ze−ρw(1 − w)‖C1+α(Ω̄)

≤ ‖w0‖C1+α(Ω̄) + Cγ

∫ t

0

‖e−ρw(1 − w)‖C1+α(Ω̄)‖z‖C1+α(Ω̄)

≤ ‖w0‖C1+α(Ω̄) + Cγ

∫ t

0

‖w‖C1+α(Ω̄)‖z‖C1+α(Ω̄)

≤ ‖w0‖C1+α(Ω̄) + C(t)γ
∫ t

0

‖w‖C1+α(Ω̄).

By the Gronwall lemma we obtain w ∈ C([0, T ]; C1+α(Ω̄)). Moreover,

wt = γze−ρw(1 − w) ∈ C1+α(Ω̄).

Hence

w ∈ C1([0, T ]; C1+α(Ω̄)). (2.2)

On the other hand, zeρw ∈ Cα,α/2(Ω̄× [0, T ]) and applying Theorem 5.4, Chap. IV
of Ref. 12 we infer that c ∈ C2+α,1+α/2(Ω̄ × [0, T ]). In particular

∆c ∈ Cα,α/2(Ω̄ × [0, T ]). (2.3)

Thanks to (2.3) and (2.2) we can deduce by Theorem 5.4, Chap. IV of Ref. 12 that

z ∈ C2+α,1+α/2(Ω̄ × [0, T ]).

Again, by the Gronwall lemma we get that w ∈ C1([0, T ]; C2+α(Ω̄)). Finally, since
wt is a product of C1([0, T ]; C2+α(Ω̄)) functions then w ∈ C2([0, T ]; C2+α(Ω̄)).
In particular, w∈C2+α,1+α/2(Ω̄× [0, T ]). Since, p is a product of C2+α,1+α/2(Ω̄×
[0, T ]) functions then p ∈ C2+α,1+α/2(Ω̄ × [0, T ]). This concludes the theorem.

3. Global Existence

In this section we study the global existence of solutions. As we have seen in the
previous section we just need to find bounds of the solution in the Sobolev space
W 1,s(Ω). The main difficulty we encounter here is the way of coupling between p

and w. In fact the lack of regularization effect in the space variable in the w-equation
and the presence of p there demands tedious estimates of the solution. During the
following lemmas we will obtain proper bounds of the solutions from the L1-norm
till the W 1,s-norm by a bootstrap argument.

From now on (p, c, w) is the unique maximal weak solution provided by Theo-
rem 2.1 and T < Tmax. In order to avoid regularity problems we assume in the rest
of the paper that the initial data satisfies (1.12) and (2.1).

Lemma 3.1. We have

0 ≤
∫

Ω

p ≤ c1 := max
{∫

Ω

p0, |Ω|
}

for any t ≤ T .
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Proof. We integrate (1.1) in the spatial variable to obtain

d

dt

∫
Ω

p = λ

∫
Ω

p − λ

∫
Ω

p2, (3.1)

and Hölder’s inequality yields

0 ≤
∫

Ω

p ≤ |Ω| 12
(∫

Ω

p2

)1
2

.

Therefore

d

dt

∫
Ω

p ≤ λ

∫
Ω

p − λ

|Ω|
(∫

Ω

p

)2

.

After solving the differential equation the proof ends.

Lemma 3.2. For any t ≤ T we have∫ t

0

∫
Ω

p2 ≤ c2(t) := c1(1/λ + t).

Proof. Integrating (3.1) on the interval (0, t) and thanks to Lemma 3.1 it results∫ t

0

∫
Ω

p2 =
1
λ

(∫
Ω

p −
∫

Ω

p0

)
+
∫ t

0

∫
Ω

p ≤ c1(1/λ + t),

which ends the proof.

Lemma 3.3. For any t ≤ T we have∫ t

0

e−2s

∫
Ω

p2ds ≤ ‖p0‖L1(Ω) + c3|λ − 2|,

where c3 is a constant which does not depend on t.

Proof. On multiplying (3.1) by e−2t and subtracting the term −2e−2t
∫
Ω

p we
obtain

d

dt

(
e−2t

∫
Ω

p

)
= (λ − 2)e−2t

∫
Ω

p − e−2t

∫
Ω

p2.

Upon integration on the time interval (0, t) we get∫ t

0

e−2s

∫
Ω

p2ds = −e−2t

∫
Ω

p +
∫

Ω

p0 + (λ − 2)
∫ t

0

e−2s

∫
Ω

p.

Applying Lemma 3.1 in the above equality the lemma follows.

Lemma 3.4. For any t ≤ T we have∣∣∣∣
∫ t

0

∫
Ω

p(1 − p)
∣∣∣∣ ≤ c1/λ.
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Proof. We integrate (1.1) over (0, t) × Ω to obtain

λ

∫ t

0

∫
Ω

p(1 − p) =
∫

Ω

p(t) −
∫

Ω

p0.

Finally taking the absolute value of both sides of the above equality and by
Lemma 3.1 we conclude the proof.

Lemma 3.5. For any t ≤ T the component c decays exponentially to zero. More
precisely we have

0 ≤ c ≤ ‖c0‖L∞(Ω)e
−t. (3.2)

Proof. We know that p ≥ 0 and by regularity p ∈ L∞(0, t; L∞(Ω)). Hence, the
standard sub–supersolutions method is available. Let us observe that c = 0 and
c̄ = ‖c0‖L∞(Ω)e

−t, and are sub and supersolutions respectively to the problem

ct − ∆c + c − µpc = 0,

∂c

∂n
= 0,

c(x, 0) = c0(x).

As a consequence, we have that c ∈ (c, c̄) which ends the proof.

Lemma 3.6. Let T > 0. Then the following inequality holds :∫ T

0

∫
Ω

|ct|2 +
∫

Ω

|∇c|2 ≤ µ2c4‖c0‖2
L∞(Ω) + ‖c0‖2

H1(Ω),

where c4 is a positive constant independently of T .

Proof. We take ct as test function in (1.2) to obtain∫
Ω

|ct|2 +
1
2

d

dt

(∫
Ω

|∇c|2 + c2

)
= −µ

∫
Ω

pcct.

By Lemma 3.5 the last term in the above equation is bounded in the following way∣∣∣∣−µ

∫
Ω

pcct

∣∣∣∣ ≤ µ2

2

∫
Ω

p2c2 +
1
2

∫
Ω

c2
t ≤ µ2

2
‖c0‖2

L∞(Ω)e
−2t

∫
Ω

p2 +
1
2

∫
Ω

c2
t .

Therefore

1
2

∫
Ω

|ct|2 +
1
2

d

dt

(∫
Ω

|∇c|2 + c2

)
≤ µ2

2
‖c0‖2

L∞(Ω)e
−2t

∫
Ω

p2.

We integrate on the time interval (0, t) to get∫ t

0

∫
Ω

|cs|2 + ‖c‖2
H1(Ω) ≤ µ2‖c0‖2

L∞(Ω)

∫ t

0

e−2s

∫
Ω

p2 + ‖c0‖2
H1(Ω).

By Lemma 3.3 the lemma is proved.
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Lemma 3.7. For any t ≤ T we have∫
Ω

|∇c(t)|2 +
∫ t

0

∫
Ω

|∇c|2 +
1
2

∫ t

0

∫
Ω

|∆c|2 ≤ c5,

where c5 does not depend on t.

Proof. We multiply Eq. (1.2) by −∆c and integrate over Ω to obtain

1
2

d

dt

∫
Ω

|∇c|2 +
∫

Ω

|∆c|2 +
∫

Ω

|∇c|2 = µ

∫
Ω

pc∆c.

Since∣∣∣∣µ
∫

Ω

pc∆c

∣∣∣∣ ≤ µ2

2

∫
Ω

p2c2 +
1
2

∫
Ω

|∆c|2 ≤ µ2

2
e−2t‖c0‖2

L∞(Ω)

∫
Ω

p2 +
1
2

∫
Ω

|∆c|2

we have

d

dt

∫
Ω

|∇c|2 +
∫

Ω

|∆c|2 + 2
∫

Ω

|∇c|2 ≤ µ2e−2t‖c0‖2
L∞(Ω)

∫
Ω

p2.

We integrate on the time interval (0, t) to get∫
Ω

|∇c(t)|2 +
∫ t

0

∫
Ω

(|∆c|2 + 2|∇c|2) ≤ µ2‖c0‖2
L∞(Ω)

∫ T

0

e−2s

∫
Ω

p2 + ‖∇c0‖2
L2(Ω).

By Lemma 3.3 the proof ends.

Lemma 3.8. For any t ≤ T∫
Ω

|∇c(t)|2 ≤ e−2t

(∫
Ω

|∇c0|2 + c2(t)µ2‖c0‖2
L∞(Ω)

)
,

where c2(t) is a linear function of t (see Lemma 3.2).

Proof. As in the previous lemma we multiply Eq. (1.2) by −∆c to obtain

d

dt

∫
Ω

|∇c|2 + 2
∫

Ω

|∇c|2 ≤ µ2‖c0‖2
L∞(Ω)e

−2t

∫
Ω

p2.

Solving the previous differential inequality we infer∫
Ω

|∇c(t)|2 ≤ e−2t

(∫
Ω

|∇c0|2 + µ2‖c0‖2
L∞(Ω)

∫ t

0

∫
Ω

p2

)
.

Finally, we apply Lemma 3.2 to conclude.

Lemma 3.9. For any t ≤ T we have

w(t) ≤ max{‖w0‖L∞(Ω), 1}.
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Proof. We solve the differential equation (1.3) to get

w(x, t) = e−γ
R t
0 p(w0 − 1) + 1 (3.3)

by the positivity of p and we have the result.

Lemma 3.10. For any t ≤ T and n ∈ (1, +∞) there exists k(n, ‖p0‖Ln(Ω), T ) < ∞
such that

‖p‖Ln(Ω) ≤ k.

Proof. We introduce the new unknown q defined by

q = p(c + 1)−αe−ρw, i.e. p = q(c + 1)αeρw, (3.4)

which satisfies

qt(c + 1)αeρw = div((c + 1)αeρw∇q) + λ(c + 1)αeρwq(1 − (c + 1)αeρwq)

− ργq2(1 + c)2αe2ρw(1 − w) − αq(c + 1)α−1

· eρw(∆c − c − µcq(c + 1)αeρw). (3.5)

Having in mind previous equality we compute

1
n

d

dt
(qn(c + 1)αeρw) = qn−1div((c + 1)αeρw∇q)

+ λ(c + 1)αeρwqn(1 − (c + 1)αeρwq)

+
1 − n

n
(γρqn+1(c + 1)2αe2ρw(1 − w)

+ αqn(c + 1)α−1eρw(∆c − c − µcq(c + 1)αeρw)).

After integration in the spatial variable we have

1
n

d

dt

∫
Ω

qn(c + 1)αeρw = −4(n − 1)
n2

∫
Ω

(c + 1)αeρw|∇q
n
2 |2

+ λ

∫
Ω

(c + 1)αeρwqn(1 − (c + 1)αeρwq)

+
(

1
n
− 1
)

γρ

∫
Ω

qn+1(1 + c)2αe2ρw(1 − w) +
(

1
n
− 1
)

α

·
∫

Ω

qn(c + 1)α−1eρw(∆c − c − µcq(c + 1)αeρw).

Since 4n−1
n ≥ 2 (for n ≥ 2) we have that

d

dt

∫
Ω

qn(c + 1)αeρw + 2
∫

Ω

|∇q
n
2 |2 ≤ nk0

∫
Ω

qn(1 + |∆c|) + n(k1 − λ)
∫

Ω

qn+1,

where

k0 = k0(λ, α, ‖c0‖L∞(Ω), ‖w0‖L∞(Ω)), k1 = k1(α, µ, ρ, ‖c0‖L∞(Ω), ‖w0‖L∞(Ω)).
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We introduce the change of variable z := q
n
2 to get

d

dt

∫
Ω

z2(c + 1)αeρw + 2
∫

Ω

|∇z|2

≤ nk0

∫
Ω

z2(1 + |∆c|) + n(k1 − λ)
∫

Ω

z2+ 2
n . (3.6)

We estimate the first term in the right-hand side of the above equation using the
Gagliardo–Nirenberg inequality in dimension 2 (that it is also true in dimension 1)

∫
Ω

z2|∆c| ≤
(∫

Ω

z4

)1
2
(∫

Ω

|∆c|2
)1

2

≤ C(Ω)‖z‖H1(Ω)‖z‖L2(Ω)‖∆c‖L2(Ω)

and Young inequality yields∫
Ω

z2|∆c| ≤ ε

∫
Ω

(|∇z|2 + z2) +
C(Ω)2

4ε
‖z‖2

L2(Ω)

∫
Ω

|∆c|2.

We replace the above estimate into (3.6) to obtain

d

dt

∫
Ω

z2(c + 1)αeρw + (2 − nk0ε)
∫

Ω

|∇z|2

≤ nk0

(
1 + ε +

C(Ω)2

4ε

∫
Ω

|∆c|2
)∫

Ω

z2 + n(k1 − λ)
∫

Ω

z2+ 2
n . (3.7)

In order to estimate
∫
Ω

z2+ 2
n we apply the Gagliardo–Nirenberg inequality∫

Ω

z2+ 2
n ≤ C(Ω)‖z‖H1(Ω)‖z‖1+ 2

n

L1+ 2
n (Ω)

≤ C(Ω)‖z‖H1(Ω)‖z‖1+ 2
n

L2(Ω)

≤ ε‖z‖2
H1(Ω) +

c2

ε
‖z‖4

L2(Ω) + 1,

and then

d

dt

∫
Ω

z2(c + 1)αeρw + (2 − n(k0 + k1 − λ)ε)
∫

Ω

|∇z|2

≤ nk0C(Ω)2

4ε
‖z‖2

L2

∫
Ω

|∆c|2 + ((1 + ε)nk0 + n(k1 − λ)ε)‖z‖2
L2(Ω)

+ n(k1 − λ)
c2

ε
‖z‖4

L2(Ω) + c3.

We take ε (that depends on n) small enough to get

d

dt

∫
Ω

z2(c + 1)αeρw +
∫

Ω

|∇z|2

≤ c10‖z‖2
L2(Ω)

∫
Ω

|∆c|2 + c11‖z‖2
L2(Ω) + c12‖z‖4

L2(Ω) + c3. (3.8)



December 12, 2013 14:13 WSPC/103-M3AS 1350055

440 C. Morales-Rodrigo & J. I. Tello

We define

ym :=
∫

Ω

q2m

(c + 1)αeρw

and

zm := q2m

then, by the boundedness from below of the weight (c + 1)αeρw we have

d

dt
ym +

∫
Ω

|∇zm−1|2 ≤ a(t)ym + c3, (3.9)

where

a(t) := c10

∫
Ω

|∆c|2 + c11 + c12

∫
Ω

zm.

For m = 1 we know that z1 ∈ L1(0, T ; L1(Ω)), therefore a(t) ∈ L1(0, T ) and solving
(3.9) we get

y1 ≤ C

∫
Ω

z1 ≤ C(T ),
∫ T

0

∫
Ω

|∇z0|2 ≤ C(T ).

Now, we use induction to prove that ym ∈ L∞(0, T ) with m ≥ 2. For this purpose
it is enough to prove that

∫
Ω zm ∈ L1(0, T ). We notice that∫

Ω

zm =
∫

Ω

z4
m−2 ≤ C‖zm−2‖2

H1(Ω)‖zm−2‖2
L2(Ω)

= C

(∫
Ω

|∇zm−2|2 +
∫

Ω

zm−1

)∫
Ω

zm−1,

and by induction we get the result.

Remark 3.1. Let us observe that during the proof of the previous theorem we
have to prove that for n ≥ 2 ∫ T

0

∫
Ω

|∇q
n
2 |2 ≤ C(T ).

Remark 3.2. At this point we should point out that by contrast with previous
lemmas the Ln-bound depends on the time variable. Actually in Sec. 5 we will be
able to remove the time dependence under some additional conditions.

Lemma 3.11. For every t ≤ T and any k > 1 we denote by Ωk(t) the set

Ωk(t) := {x ∈ Ω : q(x, t) > k}
and |Ωk(t)| stands for the Lebesgue measure of Ωk(t). We have

(k + 1)4|Ωk(t)|1/4 ≤ C(T ),

where C is a constant that does not depend on k.
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Proof. By the representation of the Lq-norm of q with the level sets we obtain

(k − 1)q|Ωk(t)| <

∫ k

k−1

sq|Ωs(t)|ds <

∫ ∞

0

sq|Ωs(t)|ds =
1

q + 1
‖q(t)‖Lq(Ω).

Next we pick q = 16 and we apply the previous lemma to get the result.

Lemma 3.12. For any s < ∞ we have∫ T

0

∫
Ω

|ct|s + |∆c|s ≤ C(T ). (3.10)

Proof. Let f := −pc; then c solves the linear problem

ct − ∆c + c = f

with Neumann boundary conditions. Next we apply Remark 48.3 on p. 439 of
Ref. 21 to get

‖c‖Ls(0,T ;W 2,s(Ω)) ≤ C‖f‖Ls(0,T ;Ls(Ω)).

Finally, the lemma follows by Lemmas 3.10 and 3.5.

Lemma 3.13.

sup
t∈[0,T ]

‖p‖L∞(Ω) ≤ C(T ).

Proof. Let qk = (q − k)+ where ( · )+ denotes the positive part function and q

is as defined in (3.4). On multiplying (3.5) by qk and following the estimates of
Lemma 3.10 we obtain

1
2

d

dt

∫
Ω

q2
k(c + 1)αeρw ≤ −

∫
Ω

(c + 1)αeρw|∇qk|2

+ C

(∫
Ω

q3
k + k

∫
Ω

q2
k +

∫
Ω

qk +
∫

Ω

(q2
k + kqk)|∆c|

)
.

We add the term
∫
Ω q2

k to both sides of the previous inequality, we multiply by 2
and by the bound 1 ≤ (c + 1)αeρw we get

d

dt

∫
Ω

q2
k(c + 1)αeρw + 2

∫
Ω

q2
k ≤ −2

∫
Ω

|∇qk|2 + C

∫
Ω

q3
k + C(k + 1)

∫
Ω

q2
k

+ k2

∫
Ω

qk + C

∫
Ω

(q2
k + kqk)|∆c|. (3.11)

In what follow we estimate the positive terms in the right-hand side. By the bound-
edness of q in Ln for any n ∈ (1,∞), the Gagliardo–Nirenberg inequality (in dimen-
sion 2) and the Young inequality we obtain

C‖qk‖3
L3(Ω) ≤ C‖qk‖2

L3(Ω) ≤ ‖qk‖4/3
H1(Ω)‖qk‖2/3

L1(Ω) ≤ ε‖qk‖2
H1(Ω) + C(ε)‖qk‖2

L1(Ω)

≤ ε‖qk‖2
H1(Ω) + C(ε)‖qk‖L1(Ω).
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In the same manner we have

C(k + 1)
∫

Ω

q2
k ≤ C(k + 1)‖qk‖L1(Ω)‖qk‖H1(Ω)

≤ ε‖qk‖2
H1(Ω) + C(k + 1)2‖qk‖L1(Ω).

Next, by the Hölder inequality, the Gagliardo–Nirenberg inequality and the Young
inequality we infer

C

∫
Ω

q2
k|∆c| ≤ ‖qk‖2

L4(Ω)‖∆c‖L2(Ω) ≤ ‖qk‖L2(Ω)‖qk‖H1(Ω)‖∆c‖L2(Ω)

≤ ε‖qk‖2
H1(Ω) + C(ε)‖qk‖2

L2(Ω)‖∆c‖2
L2(Ω).

Finally, we estimate the last term in the right-hand side by the Sobolev embedding
to get

Ck2

∫
Ω

qk|∆c| ≤ Ck2‖1|Ωk
‖L4/3(Ω)‖qk‖L8(Ω)‖∆c‖L8(Ω)

= Ck2|Ωk|3/4‖qk‖H1(Ω)‖∆c‖L8(Ω)

≤ ε‖qk‖2
H1(Ω) + k4C(ε)(1 + ‖∆c‖8

L8(Ω))|Ωk|3/2.

Putting the previous estimates into (3.11) we obtain

d

dt

∫
Ω

q2
k(c + 1)αeρw + (2 − ε)

∫
Ω

q2
k

≤ (ε − 2)
∫

Ω

|∇qk|2 + k4C(ε)(1 + ‖∆c‖8
L8(Ω))|Ωk|3/2

+ C(ε)‖qk‖2
L2(Ω)‖∆c‖2

L2(Ω) + C(k + 1)2‖qk‖L1(Ω).

Next, we handle with the L1-norm of qk in the following way

C(k + 1)2‖qk‖L1(Ω) ≤ C(k + 1)2‖1|Ωk
‖L4/3(Ω)‖qk‖L4(Ω)

≤ ε‖qk‖2
H1(Ω) + C(ε)(k + 1)4|Ωk|3/2.

Therefore, we have

d

dt

∫
Ω

q2
k(c + 1)αeρw + (2 − ε)

∫
Ω

q2
k

≤ (ε − 2)
∫

Ω

|∇qk|2 + (k + 1)4C(ε)(1 + ‖∆c‖8
L8(Ω))|Ωk|3/2

+ C(ε)‖qk‖2
L2(Ω)‖∆c‖2

L2(Ω).

Let us denote by

y(t) =
∫

Ω

q2
k(c + 1)αeρw.

Now, we pick ε sufficiently small to get ε − 2 < 0 and we apply Lemma 3.11 to
remove the polynomial growth of the constant with respect to k. Since the weight
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(c + 1)αeρw is bounded from up and below by positive constants we obtain the
following differential inequality

y′(t) + σy(t) ≤ C(ε)‖∆c‖2
L2(Ω)y(t) + C(ε)(1 + ‖∆c‖8

L8(Ω))|Ωk|5/4,

where σ < 2 is a positive constant. Hence, if a(t) = σ − C‖∆c‖2
L2(Ω) and we solve

the differential inequality we get

y(t) ≤ e−
R

t
0 a(s)ds

∫ t

0

C(1 + ‖∆c‖8
L8(Ω))e

R
s
0 a(σ)dσ|Ωk(s)|5/4ds.

Let us observe that by Lemma 3.7

e−
R

t
0 a(s)ds = e−σte

C
R

t
0 ‖∆c‖2

L2(Ω)ds ≤ C0e
−σt and e

R
t
0 a(s)ds ≤ eσt.

As a consequence, applying Lemma 3.12 we have

y(t) ≤ e−σtC0

∫ t

0

C(1 + ‖∆c(s)‖8
L8(Ω))e

σsds sup
t∈[0,T ]

|Ωk(t)|5/4

≤ C(T ) sup
t∈[0,T ]

|Ωk(t)|5/4.

From the previous estimate we infer

‖qk‖2
L2(Ω) ≤ Cy(t) ≤ C(T )

(
sup

t∈[0,T ]

|Ωk(t)|
)5/4

.

On the other hand, since Ωj ⊂ Ωk for j > k > 1 then

‖qk(t)‖2
L2(Ω) ≥

∫
Ωj(t)

q2
k ≥ (j − k)2|Ωj(t)|.

Therefore, we have

(j − k)2 sup
t∈[0,T ]

|Ωj(t)| ≤ C(T )

(
sup

t∈[0,T ]

|Ωk(t)|
)5/4

.

Let ϕ(s) = supt∈[0,T ] |Ωs(t)|, so we may rewrite the above inequality as follows:

ϕ(j) ≤ C(j − k)−2(ϕ(k))5/4.

Since ϕ is a non-negative and non-increasing function by Lemma B.1, Appendix B
on p. 63 of Ref. 11 there exists k0 < ∞ such that ϕ(k0) = 0. Therefore qk0 ≡ 0
which ends the proof.

Lemma 3.14. For any t ≤ T we have∫
Ω

|∇w|2 ≤ C(T ).
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Proof. We know that

wt = γq(c + 1)αeρw(1 − w).

From the above equality we easily obtain

d

2dt

∫
Ω

|∇w|2 = γ

∫
Ω

(c + 1)αeρw(1 − w)∇q · ∇w

+ αγ

∫
Ω

(c + 1)α−1eρw(1 − w)∇c · ∇w

+ γ

∫
Ω

q(c + 1)αeρw(ρ − ρw − 1)|∇w|2.

Hence, previous lemma entails

d

2dt

∫
Ω

|∇w|2 ≤ C(T )
(∫

Ω

|∇q|2 +
∫

Ω

|∇c|2 +
∫

Ω

|∇w|2
)

. (3.12)

By Remark 3.1 and Lemma 3.7 we know∫ T

0

(∫
Ω

|∇q|2 + |∇c|2
)

≤ C(T ).

Therefore, solving the differential inequality (3.12) we conclude the proof.

Lemma 3.15. For any t ≤ T we have

‖c(t)‖W 1,∞(Ω) ≤ C(T ).

Proof. Let us note that c solves the linear equation

ct − ∆c + c = f

under Neumann boundary condition with f := pc. Since

‖f‖L∞(0,T ;Ln(Ω)) ≤ C(T )

for n > 2 we can use linear semigroup theory to conclude the lemma (see, for
instance, p. 430 in Ref. 19 or Lemma 4.1 in Ref. 10).

Lemma 3.16. For any t ≤ T there exists C(T ) such that∫
Ω

|∇p|2 ≤ C(T ),
∫

Ω

|∇z|2 ≤ C(T ),
∫ T

0

∫
Ω

z2
t ≤ C(T ),

where z = e−ρwp.

Proof. Let us note that z satisfies

zt = e−ρw∇ · (eρw∇z) − e−ρw∇ ·
(

αzeρw

1 + c
∇c

)

+ λz(1 − zeρw) − ργeρwz2(1 − w).
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Taking zte
ρw as test function in the above equation and integrating in the spatial

variable we deduce∫
Ω

eρwz2
t +

∫
Ω

eρw∇z · ∇zt

= −
∫

Ω

zte
ρw

(
α

1 + c
∇z · ∇c +

αρz

1 + c
∇w · ∇c − αz

(1 + c)2
|∇c|2 +

αz

1 + c
∆c

)

+
∫

Ω

zte
ρw(λz(1 − zeρw) − ργeρwz2(1 − w)). (3.13)

Notice that∫
Ω

eρw∇z · ∇zt =
d

2dt

∫
Ω

eρw|∇z|2 − γρ

2

∫
Ω

e2ρwz(1 − w)|∇z|2,

−
∫

Ω

zt
αeρw

1 + c
∇z · ∇c ≤ ε

∫
Ω

z2
t eρw + C(ε)‖∇c‖2

L∞(Ω)

∫
Ω

eρw|∇z|2,

−
∫

Ω

zt
αzeρw

1 + c
∇w · ∇c ≤ ε

∫
Ω

z2
t eρw + C(ε)‖∇c‖2

L∞(Ω)‖z‖2
L∞(Ω)

∫
Ω

|∇w|2,
∫

Ω

zt
αzeρw

(1 + c)2
|∇c|2 ≤ ε

∫
Ω

z2
t eρw + C(ε)‖∇c‖4

L∞(Ω)‖z‖2
L∞(Ω),

−
∫

Ω

zt
αzeρw

1 + c
∆c ≤ ε

∫
Ω

z2
t eρw + C(ε)‖z‖2

L∞(Ω)

∫
Ω

|∆c|2,
∫

Ω

zte
ρw(λz(1 − zeρw) − ργeρwz2(1 − w)) ≤ ε

∫
Ω

z2
t eρw + C(ε, T ).

(3.14)

We pick ε ≤ 1/5 to obtain

d

dt

∫
Ω

eρw|∇z|2 ≤ C(T )
(∫

Ω

|∇z|2 +
∫

Ω

|∇w|2 +
∫

Ω

|∆c|2 + 1
)

.

Solving the above differential inequality we get the bound for ∇z(t) in H1(Ω). At
this point we easily get the bounds for zt.

Lemma 3.17. We have ∫ T

0

‖∆z‖2
L2(Ω) ≤ C(T ).

Proof. We know that

zt = ∆z + ρ∇w · ∇z − αz

1 + c
∆c − α

1 + c
∇z · ∇c

+
αz

(1 + c)2
|∇c|2 − ρz

1 + c
∇w · ∇c + h(z, w),
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where h(z, w) := λz(1 − zeρw) − ργeρwz2(1 − w). Hence,∫ T

0

‖∆z‖2
L2(Ω) ≤ C(T )

∫ T

0

(‖zt‖2
L2(Ω) + ‖∇w · ∇z‖2

L2(Ω)

+ ‖∇z · ∇c‖2
L2(Ω) + ‖|∇c|2‖2

L2(Ω)

+ ‖∇w · ∇c‖2
L2(Ω) + ‖h(z, w)‖2

L2(Ω)). (3.15)

In order to see an upper bound of the right-hand side term of the (3.15) we just
need to find a bound for the term

∫ T

0 ‖∇w · ∇z‖2
L2(Ω). By the Hölder inequality we

have ∫ T

0

‖∇w · ∇z‖2
L2(Ω) ≤

∫ T

0

‖∇w‖2
L4(Ω)‖∇z‖2

L4(Ω). (3.16)

Next lines are devoted to find a bound for ‖∇w‖2
L4(Ω), to this end we take gradient

in the equation for w to get

∇wt = γ(eρw(1 − w)∇z + ρzeρw(1 − w)∇w − zeρw∇w).

We multiply the above equality by ∇w|∇w|2 to deduce by the Young inequality
that

d

dt
‖∇w‖4

L4(Ω) ≤ C(‖∇z‖4
L4(Ω) + ‖z‖L∞(Ω)‖∇w‖4

L4(Ω)).

Solving the differential inequality and thanks to Lemma 3.15 we get

‖∇w‖4
L4(Ω) ≤ C1(T )

(
1 +

∫ t

0

‖∇z‖4
L4(Ω)ds

)
,

where C1(T ) := eC
R

T
0 ‖z‖L∞(Ω) max{‖∇w0‖4

L4(Ω), C}. Therefore, by the inequality

|x2 + y2| 12 ≤ |x| + |y| we deduce

‖∇w‖2
L4(Ω) ≤ C1(T )

1
2

(
1 +

(∫ t

0

‖∇z‖4
L4(Ω)ds

)1
2
)

.

Coming back to (3.16) we have

∫ T

0

‖∇w · ∇z‖2
L2(Ω) ≤ C

1
2
1 (T )

∫ T

0

(
‖∇z‖2

L4(Ω) +
(∫ t

0

‖∇z‖4
L4(Ω)ds

)1
2

‖∇z‖2
L4(Ω)

)

= C
1
2
1 (T )

∫ T

0

(
‖∇z‖2

L4(Ω) +
(
‖∇z‖4

L4(Ω)

∫ t

0

‖∇z‖4
L4(Ω)ds

)1
2
)

.

We notice that∫ t

0

‖∇z(σ)‖4
L4(Ω)dσ‖∇z(s)‖4

L4(Ω) =
1
2

d

dt

(∫ t

0

‖∇z(σ)‖4
L4(Ω)dσ

)2

,
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and by the Hölder inequality in the time variable∫ T

0

(
‖∇z‖4

L4(Ω)

∫ t

0

‖∇z‖4
L4(Ω)ds

)1
2

=
∫ T

0

[
1
2

d

dt

(∫ t

0

‖∇z(σ)‖4
L4(Ω)dσ

)2
] 1

2

≤ T
1
2

2

[∫ T

0

d

dt

(∫ t

0

‖∇z(σ)‖4
L4(Ω)dσ

)2
] 1

2

≤ T
1
2

2

[∫ T

0

‖∇z(σ)‖4
L4(Ω)

] 1
2

,

we infer ∫ T

0

‖∇w · ∇z‖2
L2(Ω) ≤ C

1
2
1 (T )

∫ T

0

‖∇z(s)‖2
L4(Ω)ds

+
T 1/2

2

[∫ T

0

‖∇z(s)‖4
L4(Ω)dσ

] 1
2

.

Now, we apply the Gagliardo–Nirenberg inequality

‖∇z‖2
L4(Ω) ≤ C(Ω)‖∆z‖L2(Ω)‖∇z‖L2(Ω)

to get ∫ T

0

‖∇w · ∇z‖2
L2(Ω) ≤ ε

∫ T

0

‖∆z(s)‖2
L2(Ω)ds + C(ε)

∫ T

0

‖∇z‖2
L2(Ω)

+ C(T )

[∫ T

0

‖∆z‖2
L2(Ω)‖∇z‖2

L2(Ω)

] 1
2

.

By Lemma 3.16 we have∫ T

0

‖∇w · ∇z‖2
L2(Ω) ≤ ε

∫ T

0

‖∆z‖2
L2(Ω)ds + C(T, ε) + C(T )

[∫ T

0

‖∆z‖2
L2(Ω)

] 1
2

.

Next, we pick ε small enough and thanks to (3.15) we have

∫ T

0

‖∆z‖2
L2(Ω)ds ≤ C(T )

1 − εC(T )


1 +

[∫ T

0

‖∆z‖2
L2(Ω)

] 1
2

. (3.17)

In order to conclude the proof we notice that the inequality x ≤ A + Bx
1
2 implies

the boundedness of x.

Lemma 3.18. We have that

‖z‖L2(0,T ;H2(Ω)) ≤ C(T ).
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Proof. Let us define the set

K :=
{

ϕ ∈ H2(Ω) :
∂ϕ

∂n
= 0,

∫
Ω

ϕ = 0
}

.

It is known that −∆ is an isomorphism from K to L2(Ω). Since z − z̄ ∈ K where
z̄ = 1

|Ω|
∫
Ω

z then

‖z‖H2(Ω) ≤ ‖z − z̄‖H2(Ω) + ‖z̄‖H2(Ω) ≤ ‖∆(z − z̄)‖L2(Ω) + ‖z̄‖H2(Ω)

= ‖∆z‖L2(Ω) + C,

which ends the proof.

Remark 3.3. Thanks to the previous lemma and the Sobolev embedding we may
assert that ∇z ∈ (L2(0, T ; Ln(Ω)))N for any n ≥ 2.

Lemma 3.19. For any t ≤ T and n ≥ 2 we have

‖w(t)‖W 1,n(Ω) ≤ C(T ).

Proof. We take the equation that satisfies ∇wt we multiply it by |∇w|n−2∇w and
we integrate in the space variable to get

d

ndt

∫
Ω

|∇w|n ≤ C(T )
∫

Ω

|∇w|n + C(T )‖∇z‖Ln(Ω)‖∇w‖Ln(Ω)

≤ C(T )
∫

Ω

|∇w|n + C(T )(1 + ‖∇z‖2
Ln(Ω))(1 + ‖∇w‖n

Ln(Ω)).

Let us observe that the above inequality can be rewritten in the form

y′(t) ≤ a(t)y(t) + b(t),

where y(t) =
∫
Ω |∇w|n and a(t), b(t) ∈ L1(0, T ). Therefore, solving the differential

equation we get the result.

Lemma 3.20. For any t ≤ T and n ≥ 2 we have

‖p(t)‖W 1,n(Ω) ≤ C(T ).

Proof. Let us note that the equation for z can be rewritten in the form

zt = ∆z + b(x, t) · ∇z + a(x, t)z,

where

‖b‖(L5(0,T ;L5(Ω)))N ≤ C(T ), ‖a‖L5(0,T ;L5(Ω)) ≤ C(T )

and

lim
τ→0

‖b‖(L5(t,t+τ ;L5(Ω)))N = lim
τ→0

‖a‖L5(t,t+τ ;L5(Ω)) = 0.
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Therefore, by Theorem 9.1, Chap. IV of Ref. 12 (q = 5) we have

‖z‖W 2,1
5 (Ω×(0,T )) ≤ C(T ).

Since q > N + 2 the corollary after Theorem 9.1, Chap. IV of Ref. 12 asserts, in
particular, that

‖z(t)‖W 1,n(Ω) ≤ C(T ).

From here we easily get the result.

Theorem 3.1. Under the assumptions (1.7)–(1.12) and (2.1) there exists a unique
global classical solution to (1.1)–(1.6) satisfying

(p, c, w) ∈ C2+α,1+α/2(Ω̄ × [0, T ])

for any T < +∞.

Proof. The result is a consequence of the local existence result given in
Theorem 2.1, the bounds of the unknowns in L∞(0, T ; W 1,s(Ω)) and Theorem 2.2.

4. Steady States

We study in this section the positive steady states of (1.1)–(1.5) defined by

div
(
∇p − p

(
α

1 + c
∇c + ρ∇w

))
+ λp(1 − p) = 0, x ∈ Ω,

p(1 − w) = 0, x ∈ Ω,

−∆c + (1 + µp)c = 0, x ∈ Ω,

and the boundary conditions (1.6)–(1.7) for each x ∈ ∂Ω.

Lemma 4.1. The positive steady states of (1.1)–(1.5) are defined by

(p, c, w) = (1, 0, 1), (p, c, w) = (0, 0, w̃),

where w̃ is any function in W 2,s(Ω).

Proof. We multiply the c-equation by c to obtain∫
Ω

|∇c|2 + (1 + µp)c2 = 0.

Hence, we have c = 0.

Case 1. w ≡ 1 then p ≥ 0 is a solution to

−∆p = λp(1 − p),
∂p

∂n
= 0.

Clearly p = 0 and p = 1 are solutions to the above problem. Moreover, by Lemma 1
of Ref. 6, p ≡ 1 is the only positive solution.
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Case 2. w �≡ 1 then either p ≡ 0 or p �≡ 0. If p �≡ 0 then z ≥ 0, z �≡ 0 satisfies

−∆z + ρ∇w · ∇z + λz2eρw = λz,
∂z

∂n
= 0.

Thus, z is a strict super solution of(
−∆ϕ + ρ∇w · ∇ϕ + λϕzeρw,

∂ϕ

∂n

)
.

Therefore, by the strong maximum principle (see Theorem 2.4 of Ref. 2) we have
z(x) > 0 for each x ∈ Ω̄ and, as a consequence, p(x) > 0 for each x ∈ Ω̄ that
contradicts p(1 − w) = 0 and ends the proof.

5. Asymptotic Behavior

In this section we study the long-time behavior for (1.1)–(1.5). We restrict our
study to domains up to dimension 2. Basically, we will have two kind of restrictions
ensuring the convergence to the homogeneous steady-states. Both conditions involve
only to the initial data w0.

Lemma 5.1. Under conditions of Theorem 3.1 we have∫ +∞

0

∫
Ω

p|w − 1| ≤ ‖w0 − 1‖L1(Ω).

Proof. We multiply the w-equation by H(w − 1) (the Heaviside function) to get

d

dt

∫
Ω

|w − 1| = −
∫

Ω

p|w − 1|. (5.1)

Therefore, integrating the above equation on the time variable the lemma is
concluded.

Lemma 5.2. Under conditions of Theorem 3.1 we have∫ +∞

0

∫
Ω

p|∇c|2 ≤ C

for some positive constant C.

Proof. By the Hölder inequality and the Gagliardo–Nirenberg inequality we
deduce ∫ +∞

0

∫
Ω

p|∇c|2 ≤
∫ +∞

0

‖p‖L2(Ω)‖∇c‖2
L4(Ω)

≤
∫ +∞

0

‖p‖L2(Ω)‖∆c‖L2(Ω)‖∇c‖L2(Ω)

≤ 1
2

∫ +∞

0

‖p‖2
L2(Ω)‖∇c‖2

L2(Ω) +
1
2

∫ +∞

0

‖∆c‖2
L2(Ω).
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By Lemmas 3.7 and 3.8 we infer∫ +∞

0

∫
Ω

p|∇c|2 ≤ 1
2

∫ +∞

0

‖p‖2
L2(Ω)e

−2s(C + Cs) + C.

Next, we apply Lemma 3.3 and the bound se−εs ≤ C(ε) for any s > 0 to get∫ +∞

0

∫
Ω

p|∇c|2 ≤ C + C

∫ +∞

0

eε−2‖p‖2
L2(Ω).

Finally, we pick ε < 2 and we argue as in Lemma 3.3 to conclude the proof.

Let us denote by p̄ the mean value of p i.e.

p̄ :=
1
|Ω|
∫

Ω

p.

Lemma 5.3. Under conditions of Theorem 3.1 we have∫
Ω

(p − p̄)2 ≤ C

∫
Ω

|∇p|2
p

for some positive constant C.

Proof. Notice that the Poincare–Wintinger inequality and the Hölder inequality
assert ∫

Ω

(p − p̄)2 ≤ C

(∫
Ω

|∇p|
)2

≤ C

∫
Ω

p

∫
Ω

|∇p|2
p

.

Thus, by Lemma 3.1 the lemma follows.

Lemma 5.4. For every t ≥ 0 and κ > 0 the following equality holds :

d

dt
F (p(t), w(t)) = G(p(t), w(t), c(t)),

where

F (p, w) = κ

∫
Ω

|∇w|2 +
∫

Ω

p(ln p − 1) + ρ

∫
Ω

p(w − 1) − γκ

∫
Ω

p(w − 1)2,

G(p, w, c) = −
∫

Ω

|∇p|2
p

+
∫

Ω

α

1 + c
∇p · ∇c +

∫
Ω

(2αγκ(1 − w) + αρ)
p

1 + c
∇c · ∇w

+
∫

Ω

(ρ2 − 2γκ + 2ργκ(1 − w))p|∇w|2 + λ

∫
Ω

p(1 − p) ln p

+ λρ

∫
Ω

p(1 − p)(w − 1) + γρ

∫
Ω

p2(1 − w)

+ 2γ2κ

∫
Ω

p2(w − 1)2 − λγκ

∫
Ω

p(1 − p)(w − 1)2.
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Proof. From the w-equation we have

κ
d

dt

∫
Ω

|∇w|2 = 2γκ

∫
Ω

(1 − w)∇p · ∇w − 2γκ

∫
Ω

p|∇w|2. (5.2)

Next, we multiply the p-equation by ln p and we integrate in the space variable to
get

d

dt

∫
Ω

p(ln p − 1) = −
∫

Ω

|∇p|2
p

+
∫

Ω

α

1 + c
∇p · ∇c + ρ

∫
Ω

∇p · ∇w

+ λ

∫
Ω

p(1 − p) ln p. (5.3)

Moreover, we know that

ρ
d

dt

∫
Ω

p(w − 1) = −ρ

∫
Ω

∇p · ∇w + αρ

∫
Ω

p

1 + c
∇c · ∇w + ρ2

∫
Ω

p|∇w|2

+ λρ

∫
Ω

p(1 − p)(w − 1) + γρ

∫
Ω

p2(1 − w), (5.4)

and

γκ
d

dt

∫
Ω

p(w − 1)2 = −2γκ

∫
Ω

(w − 1)∇p · ∇w + 2αγκ

∫
Ω

p(w − 1)
1 + c

∇c · ∇w

+ 2ργκ

∫
Ω

(w − 1)p|∇w|2 − 2γ2κ

∫
Ω

p2(w − 1)2

+ λγκ

∫
Ω

p(1 − p)(w − 1)2.

Hence, adding (5.2)–(5.4) and subtracting the above equality we deduce the result.

The following lemma will provide us a some crucial estimates that will allow us
to remove the time dependence of p in the L∞-norm. Let us denote by (H1), (H2)
the following hypotheses:

(H1) ‖w0 − 1‖L∞(Ω) < δ,

(H2) w0 > 1.

Lemma 5.5. There exist δ, κ > 0 such that if (H1) is satisfied then

G(p, w, c) ≤ −ε

∫
Ω

|∇p|2
p

+ C(ε)
∫

Ω

p|w − 1| + C(ε)
∫

Ω

p|∇c|2 − ε

∫
Ω

p|∇w|2

for some ε > 0.
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Proof. By the Hölder and Young inequalities we have∫
Ω

α

1 + c
∇p · ∇c ≤ ε

∫
Ω

|∇p|2
p

+ C(ε)
∫

Ω

p|∇c|2,
∫

Ω

(2αγκ(1 − w) + αρ)
p

1 + c
∇c · ∇w ≤ ε′

∫
Ω

p|∇w|2 + C(ε′)
∫

Ω

p|∇c|2,

for any ε, ε′ > 0. Let us denote by θ(p, w) to the lower-order terms of G(p, w, c)

θ(p, w) := λ

∫
Ω

p(1 − p) ln p + λρ

∫
Ω

p(1 − p)(w − 1) + γρ

∫
Ω

p2(1 − w)

+ 2γ2κ

∫
Ω

p2(w − 1)2 − λγκ

∫
Ω

p(1 − p)(w − 1)2.

Since s(1 − s) ln s ≤ 0 for s ≥ 0 it results

θ(p, w) ≤ ρ(λ + γ)
∫

Ω

p2|w − 1| + λρ

∫
Ω

p|w − 1| + γκ(λ + 2γ)
∫

Ω

p2(w − 1)2

≤ (ρ(λ + γ) + γκ(λ + 2γ)‖w − 1‖L∞(Ω))
∫

Ω

p2|w − 1| + λρ

∫
Ω

p|w − 1|.

Next, we apply Lemma 5.3 to get∫
Ω

p2|w − 1| ≤
∫

Ω

(p − p̄)2|w − 1| + 2p̄

∫
Ω

p|w − 1|

≤ ‖w − 1‖L∞(Ω)

∫
Ω

(p − p̄)2 + 2C

∫
Ω

p|w − 1|

≤ ‖w − 1‖L∞(Ω)C

∫
Ω

|∇p|2
p

+ 2C

∫
Ω

p|w − 1|.

On the other hand, from the w-equation (see (3.3)) we have

‖w(t) − 1‖L∞(Ω) ≤ ‖w0 − 1‖L∞(Ω), ∀ t ≥ 0.

Hence, previous estimates assert

G(p, w, c) ≤ k1(w0, ε, κ)
∫

Ω

|∇p|2
p

+ k2(w0, ε, κ)
∫

Ω

p|∇w|2

+ C(ε, ε′)
∫

Ω

p|∇c|2 + C

∫
Ω

p|w − 1|,

where

k1(w0, ε, κ) := ε + (ρ(λ + γ) + γκ(λ + 2γ)‖w0 − 1‖L∞(Ω))C‖w0 − 1‖L∞(Ω) − 1,

k2(w0, ε, κ) := ε′ + ρ2 + 2ργκ‖w0 − 1‖L∞(Ω) − 2γκ.
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In particular, we pick κ > 0 such that ρ2 − 2γκ < 0. Then for ε, ε′ > 0 sufficiently
small there exists δ > 0 such that

k1(‖w0 − 1‖L∞(Ω)) ≤ k1 < 0, k2(‖w0 − 1‖L∞(Ω)) ≤ k2 < 0

whenever ‖w0 − 1‖L∞(Ω) < δ.

Lemma 5.6. There exists δ > 0 such that whenever (H1) holds then∫
Ω

|p(t) ln p(t)| ≤ C, ∀ t ≥ 0,

and ∫ +∞

0

∫
Ω

|∇p|2
p

+
∫ +∞

0

∫
Ω

p|∇w|2 ≤ C.

for some constant C > 0.

Proof. Combining Lemma 5.4 and Lemma 5.5 we infer

d

dt
F (p, w) ≤ −ε

∫
Ω

|∇p|2
p

+ C(ε)
∫

Ω

p|w − 1| + C(ε)
∫

Ω

p|∇c|2 − ε

∫
Ω

p|∇w|2.

Therefore, by integration on the time variable the above inequality and applying
Lemmas 5.1 and 5.2 we conclude the proof.

Remark 5.1. The estimates provided by the previous lemma will allow us to
remove the time dependence for the L∞-norm of p. Such an estimate it is crucial
in our proof of the convergence to the steady-state.

In what follows we will show that the estimates of Lemma 5.6 also holds when
w0 > 1.

Lemma 5.7. Under the assumption (H2) there exists a constant C > 0 such
that

sup
t≥0

∫
Ω

|p(t) ln p(t)| < C,

∫ +∞

0

∫
Ω

|∇p|2
p

< C,

∫ +∞

0

∫
Ω

p|∇w|2 < C.

Proof. We consider the unknown v = w − 1. Since w0 > 1 then, solving the
w-equation we have that v(x, t) > 0 for all (x, t) ∈ Ω × (0, +∞). Thus,

√
v is well

defined for each (x, t) ∈ Ω × (0, +∞). We know that

2ρ

γ

d

dt

∫
Ω

|∇√
v|2 =

4ρ

γ

∫
Ω

∇√
v · ∇

(
1

2
√

v
(−γpv)

)

= −2ρ

∫
Ω

p|∇√
v|2 − ρ

∫
Ω

∇p · ∇v.
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Moreover, we have (see (5.3))

d

dt

∫
Ω

p(ln p − 1) +
∫

Ω

|∇p|2
p

=
∫

Ω

α

1 + c
∇p · ∇c + ρ

∫
Ω

∇p · ∇w

+ λ

∫
Ω

p(1 − p) ln p.

Adding previous inequalities we obtain

d

dt

∫
Ω

p(ln p − 1) +
2ρ

γ

d

dt

∫
Ω

|∇√
v|2

= −
∫

Ω

|∇p|2
p

+
∫

Ω

α

1 + c
∇p · ∇c + λ

∫
Ω

p(1 − p) ln p − 2ρ

∫
Ω

p|∇√
v|2

≤ (ε − 1)
∫

Ω

|∇p|2
p

+ C(ε)
∫

Ω

p|∇c|2 − 2ρ

∫
Ω

p|∇√
v|2,

for any ε > 0. Thus, we pick ε > 0 small enough and integrate in the time variable
to apply Lemma 5.2 which ends the proof.

Lemma 5.8. If w0 satisfies either (H1) or (H2) then there exists C > 0 such that

sup
t≥0

‖p(t)‖L∞(Ω) ≤ C.

Proof. We have that (see (3.7))

d

dt

∫
Ω

z2(c + 1)αeρw + (2 − nk0ε)
∫

Ω

|∇z|2

≤ nk0

(
1 + ε +

C(Ω)2

4ε

∫
Ω

|∆c|2
)∫

Ω

z2 + n(k1 − λ)
∫

Ω

z2+ 2
n .

At this point, we estimate
∫
Ω

z2+2/n. We distinguish between the cases n = 2 or
n > 2. If n = 2 then z := q. By (H1) or (H2) we have

sup
t≥0

‖p(t) ln p(t)‖L1(Ω) ≤ C.

Hence,

sup
t≥0

‖z(t) ln z(t)‖L1(Ω) ≤ C.

Next, we apply (22) of Ref. 5 to obtain∫
Ω

z3 ≤ ε‖z‖H1(Ω)‖z ln z‖L1(Ω) + C(ε)‖z‖L1(Ω) ≤ ε‖z‖H1(Ω)C + C(ε)‖z‖L1(Ω).

If n > 2 then by the Gagliardo–Nirenberg inequality there exists k1(n) < 2 such
that ∫

Ω

z2+2/n ≤ C‖z‖k1(n)
H1(Ω)‖z‖L1(Ω) ≤ ε‖z‖2

H1(Ω) + C(ε)‖z‖k2(n)
L1(Ω).
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Moreover, the Gagliardo–Nirenberg inequality also entails

‖z‖L2(Ω) ≤ ε‖z‖H1(Ω) + C(ε)‖z‖L1(Ω).

We pick ε > 0 sufficiently small in the previous inequalities and we substitute them
into (3.7) to get

d

dt

∫
Ω

z2(c + 1)αeρw +
∫

Ω

z2(c + 1)αeρw

≤ C

∫
Ω

|∆c|2
∫

Ω

z2 + C

((∫
Ω

z

)2

+
(∫

Ω

z

)k2(n)
)

.

Let us note that if we define

ym :=
∫

Ω

q2m

(c + 1)αeρw

then from the previous inequality we obtain

d

dt
ym + ym ≤ c

∫
Ω

|∆c|2ym + C(y2
m−1 + y

k2(m)
m−1 ).

It is known that supt≥0 y0(t) < C. As a consequence, if we pick m = 1 in the above
inequality and we solve the differential inequality we get supt≥0 y1(t) < C. There-
fore, by a recursive argument we get that for any m ∈ N we have supt≥0 ym(t) < C.
As a consequence

sup
t≥0

‖p(t)‖Ln(Ω) ≤ C

for any n ∈ N. From here, we just need to argue as in Lemma 3.13 to conclude the
lemma.

Lemma 5.9. If either (H1) or (H2) holds then

lim
t→+∞ ‖p − p̄‖L2(Ω) = 0.

Proof. We consider the function k(t) ≥ 0 defined by

k(t) :=
∫

Ω

|p − p̄|2.

By Lemma 6.3 of Ref. 15 it is enough to prove that∫ +∞

0

k(s)ds < +∞,

∫ +∞

0

|k′(s)|ds < +∞.

In order to estimate
∫ +∞
0

k(s)ds we just need to apply Lemmas 5.3, 5.6 and 5.7. In
fact, ∫ +∞

0

k(t)dt ≤ C

∫ +∞

0

∫
Ω

|∇p|2
p

≤ C.
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An estimate for
∫ +∞
0 |k′(s)|ds will demand an estimate of

∫ +∞
0

∫
Ω p(p−1)2. To this

end we argue as follows:

1
2

d

dt

∫
Ω

(p − 1)2 = −
∫

Ω

|∇p|2 +
∫

Ω

p∇w · ∇p +
∫

Ω

p

1 + c
∇c · ∇p − λ

∫
Ω

p(p − 1)2

≤ (ε − 1)
∫

Ω

|∇p|2 + C(ε)
∫

Ω

(p2|∇w|2 + p2|∇c|2) − λ

∫
Ω

p(p − 1)2.

From the above inequality and Lemma 5.8 we easily infer∫ +∞

0

∫
Ω

p(p − 1)2 ≤ C.

On multiplying the p-equation by (p − p̄) we obtain

1
2
|k′(t)| ≤

∫
Ω

|∇p|2 + C

(∫
Ω

p|∇w|2 +
∫

Ω

p|∇c|2
)

+ λ

∫
Ω

p|p − 1||p − p̄|

≤
∫

Ω

|∇p|2 + C

(∫
Ω

p|∇w|2 +
∫

Ω

p|∇c|2
)

+ λ

(∫
Ω

p(p − 1)2 + C

∫
Ω

(p − p̄)2
)

.

Hence, if we integrate the above inequality on the time variable we get∫ +∞

0

|k′(s)|ds < C

and the lemma follows.

Lemma 5.10. If either (H1) or (H2) holds then

lim
t→+∞ p̄(t)(p̄(t) − 1)2 = 0.

Proof. We integrate the p-equation on the spatial variable Ω to obtain

p̄t = λ

(
p̄ − 1

|Ω|
∫

Ω

p2

)
= λ

(
p̄ − 1

|Ω|
∫

Ω

(p − p̄)2 − p̄2

)
.

As in previous lemma we introduce k(t) defined by

k(t) :=
1
|Ω|
∫

Ω

(p − p̄)2

therefore,

p̄t = λ(p̄ − p̄2 − k(t)).

We multiply the above equation by p̄ − 1 to get

d

dt
(p̄ − 1)2 + λp̄(p̄ − 1)2 = −k(t)(p̄ − 1).



December 12, 2013 14:13 WSPC/103-M3AS 1350055

458 C. Morales-Rodrigo & J. I. Tello

Next, we integrate over (0,∞) the above equality to deduce

λ

∫ ∞

0

p̄(p̄ − 1)2 ≤ (p̄(0) − 1)2 + sup
t≥0

|p̄ − 1|
∫ ∞

0

k(t)dt.

Hence, we obtain ∫ ∞

0

p̄(p̄ − 1)2 ≤ C. (5.5)

On the other hand, we have
d

dt
p̄(p̄ − 1)2 = p̄t((p̄ − 1)2 + 2p̄(p̄ − 1)).

Since 0 ≤ p̄ ≤ C and |p̄t| ≤ λ(|p̄| + |Ω|−1‖p(t)‖L2(Ω)) < C we deduce∣∣∣∣ d

dt
p̄(p̄ − 1)2

∣∣∣∣ < C. (5.6)

By (5.5) and (5.6) we conclude that limt→+∞ p̄(t)(p̄(t) − 1)2 = 0 (see Lemma 5.1
in Ref. 8).

Lemma 5.11. If either (H1) or (H2) holds then

lim
t→∞ |p̄ − 1| = 0.

Proof. By Lemma 5.10 we have that either p̄ → 0 or p̄ → 1. We know that

p̄t = λ

(
p̄ − p̄2 − 1

|Ω|
∫

Ω

(p − p̄)2
)

.

Moreover, Lemma 5.3 entails∫
Ω

(p(t) − p̄)2 ≤ Cp̄

∫
Ω

|∇p|2
p

.

As a consequence, if we denote by

b(t) =:
C

|Ω|
∫

Ω

|∇p|2
p

,

we obtain

− 1
|Ω|
∫

Ω

(p − p̄)2 ≥ −b(t)p̄.

By the above estimate we have that

p̄t ≥ λ(1 − p̄ − b(t))p̄.

Notice that, by Lemmas 5.6 and 5.7 we know that
∫ +∞
0 b(t) ≤ k11 < +∞. As a

consequence, we obtain

p̄ ≥ p̄0e
λt−λ

R
t
0 p̄(s)−λ

R
t
0 b(s)ds ≥ p̄0e

λt−λ
R

t
0 p̄(s)e−λ

R ∞
0 b(s)ds,

p̄0e
λt−λ

R
t
0 p̄(s)−λ

R ∞
0 b(s)ds ≥ k0e

λt−λ
R

t
0 p̄(s).

In order to finish the proof we assume limt→+∞ p̄(t) = 0 and we will arrive to a
contradiction. Since limt→+∞ p̄(t) = 0 then there exists T0 ≥ 0 such that p̄ < λ

2 for
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t > T0. Hence, ∫ t

0

p̄ ≤ λ

2
(t − T0) + k1.

From the above inequality we deduce that

p̄ ≥ k0e
(λ/2)T0−k1e

λ
2 t, (5.7)

which contradicts the assumption for sufficiently large t and ends the proof.

Theorem 5.1. If either (H1) or (H2) holds, then

lim
t→∞ ‖w − 1‖L∞(Ω) = 0.

Proof. The proof is a consequence of previous lemmas.

6. Numerical Simulations

In this section we perform some numerical experiments in order to illustrate the
results of previous sections as well as exploring the behavior of the system for some
small perturbations of the original model. In particular we will focus on the role of
different boundary conditions for the TAF at the boundary of the tumor. It seems
reasonable to think that TAF is continuously secreted at the boundary of the tumor.
The simulations are done in a one-dimensional domain applying an explicit first-
order finite difference scheme in time and a second-order finite difference scheme
in the spatial variable on an uniform mesh. Since the motion of endothelial cells is
driven mainly by chemotaxis and haptotaxis we assume

D � ρ, D � χ.

Moreover the diffusion coefficient for the endothelial cells is much smaller than the
diffusion coefficient of the TAF. More precisely in Ref. 3 it is claimed that D ∼ 10−3.
In all the simulations we consider the following parameters:

∆x =
1
70

, ∆t = 10−4, α = 0.03, ρ = 0.03, γ = 1, µ = 1, D = 0.001.

Here ∆x represents the distance between two points of the spatial mesh and ∆t is
the time step. The initial conditions for the endothelial cells, TAF and fibronectin
are

p0(x) = e−100x2
, c0(x) = 0.6e−100(x−1)2, w0(x) = 1 + 0.2 cos(πx).

In all the figures we plot the evolution of the system at different times t = 1, t = 5,
t = 10 and t = 40.

In Fig. 1 simulations indicate that the endothelial cells expand throughout the
domain, the TAF is decreasing to zero very fast and the fibronectin reach very
slowly the value 1.
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Fig. 1. Neumann boundary condition.
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Fig. 2. Dirichlet boundary condition.
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Fig. 3. Non-homogeneous Neumann boundary condition.

In Fig. 2 we have changed the boundary condition for c at the tumor bound-
ary x = 1 and instead of Neumann we consider the Dirichlet boundary condition
c(1) = 1.5. Here we observe that the motion of the endothelial cells is faster because
a higher gradient of TAF produced by the boundary conditions. Moreover, simu-
lations show that the TAF is monotone increasing as the distance to the tumor
decreases. The behavior of the fibronectin in that case is similar to the case with
Neumann boundary condition. It should be noted that endothelial cells remains
non-homogeneous and they do not reach the value 1 but remains close to. In fact,
the minimum is attained at x = 0 and the maximum at x = 1. It seems that there
is a loss of endothelial cells because the flux at x = 1 caused by the gradient of
TAF.

In Fig. 3 we consider the non-homogeneous boundary condition ∂c
∂n (1) = 1.5.

The behavior of the system is similar to the case of Dirichlet boundary condition.

7. Discussion

In this paper we have presented a mathematical model of angiogenesis that is a
small variation of the continuous model proposed in Ref. 3. More precisely we have
considered the random motility, the decay of the TAF and the birth and death terms
associated with the endothelial cells. The problem is a system of three equations: two
parabolic equations with chemotactic terms to model endothelial cells and tumor
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angiogenesis factors coupled to an ordinary differential equation which describes
the evolution of the fibronectin concentration. The original problem has a large
number of parameters that have been reduced after renormalization. Additionally
in order to simplify the analysis we have assumed, for the analytical part of the
paper, that the diffusion coefficient in (1.1) is given by D = 1, the computations
and results can easily be adapted for the general case D > 0. The choice of D = 1
was done exclusively for the sake of clarity.

In Sec. 3 we have proved that the solutions of the problem are global and
regular in dimension 2 independently of the value of the parameters. Moreover,
under additional hypothesis on the initial fibronectin concentration (H1) or (H2),
we prove that the endothelial cells expand throughout the domain and distributes
in an homogeneous way on the spatial domain. Additionally we have proved that
the TAF goes to zero and the fibronectin goes to the constant value 1 when the
time is large.

In Sec. 6 we have performed a series of numerical investigations in a one-
dimensional domain with the purpose of validate the analytical results of previ-
ous sections as well as explore numerically the behavior of the system for different
boundary conditions of the TAF at the tumor boundary. Numerical simulations
suggest that the results in Sec. 5 remain valid even when assumptions (H1) and
(H2) are not satisfied. We explore different boundary conditions for the TAF based
on the idea that TAF is continuously secreted at the boundary of the tumor. We
propose, as it is suggested in Ref. 18, that the boundary condition at the tumor
boundary for the TAF depends on the nutrients concentration at the tumor bound-
ary. More precisely, low nutrients imply high rate of production of TAF and the
other way round. Therefore, if we denote by r the amount of nutrients at x = 1 we
should have

∂c

∂n
(1) = γ(r),

where γ is a decreasing function on r which is zero for r ≥ r∗ > 0. Since the
nutrients are provided mainly by the blood vessels we could argue that an efficient
vasculature it is asymptotically equivalent to the Neumann boundary because the
nutrients available at the boundary will be over the threshold value r∗ whereas if
the blood vessels are not efficient we should have TAF produced continuously at the
tumor boundary. Therefore we may argue that non-homogeneous Neumann bound-
ary condition or Dirichlet boundary condition refers to the case of poor vasculature
and the Neumann boundary refers to the case of efficient vasculature. However, as
it is pointed out in Ref. 22 in tumor angiogenesis the pattern of blood vessels are
abnormal and there are deficiencies in oxygenation. As a consequence, it seems that
non-homogeneous Neumann boundary conditions or Dirichlet boundary conditions
at the tumor boundary are more realistic for the tumor angiogenesis. Nevertheless
we have explored the Neumann boundary condition for a deeper understanding of
the model proposed in Ref. 3.
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Numerical simulations show that in the case of non-homogeneous boundary
condition as well as Dirichlet boundary condition at the tumor boundary the motion
of the endothelial cells is faster than in the case of Neumann boundary condition.
Moreover, after some time the endothelial cells reach a non-homogeneous steady
state, i.e. the endothelial cells distribute in a non-homogeneous way in the domain.

Our estimates work only for one- and two-dimensional domains and clearly the
Sobolev embeddings used in Secs. 3 and 4 do not allow us to extend the results
to the three-dimensional case. We believe that the results should be also true for
three-dimensional domains (without any restriction on the parameters or the size
for the initial data) however the analytical proof will demand new ideas.
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