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Abstract In this paper we consider a numerical approach to reach the equilibrium position of
a journal bearing with radial loading. The system consists of an external cylinder surrounding
a rotating shaft. The problem is modelled by the hydrodynamic Reynolds equation with a
cavitation model of Elrod–Adams. Both equations are coupled to Newton’s second law which
describes the position of the shaft. The problem is considered as an inverse problem where the
coefficient of the equation is unknown. The numerical approach to solve the inverse problem
is based on a trust-region algorithm along with the finite element method. The Heaviside
function in the Elrod–Adams equation is approximated by a third order Hermite polynomial.
The trust-region algorithm for solving the inverse problem showed another way of solution,
different from the ones that exist at this moment.

Keywords Cavitation · Elrod–Adams model · Finite element method · Inverse problem ·
Journal bearing · Trust-region algorithm

Mathematics Subject Classification (2000) 65M32 · 65M25 · 49J10

1 Introduction

The device consists of an external cylinder which surrounds a rotating shaft in relative motion.
Both are closely spaced and the annular gap between them is filled with a lubricant to prevent
the contact. Journal bearings are used extensively for load support of rotating machinery like
thermal engines, compressors or gear boxes.
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In this paper we aim to obtain a numerical approach to predict the equilibrium position
of the shaft which balances the hydrodynamic load and a given force vector imposed on
the device. We consider a stationary regime of a Newtonian, incompressible, isothermal and
isoviscous lubricant. Notice that the device should support the forces applied without contact
between both surfaces. Technical problems on those devices entail stopping a productive
machine, a disassembly process, and in general a waste of economical resources. This work
is a first step to understanding the vast problem of journal bearing with an imposed load. The
stability of the steady state is not addressed here. Nevertheless, it is an interesting question
that will be considered for future work. Other interesting questions remain open, as the global
existence of the time dependent problem or finite time contact. Concerning the direct problem,
roughness is also one of the challenges of the field, see for instance [4,5] and references there
in.

Mathematical models in Lubrication Theory assume that the unknown pressure p is con-
stant through the thickness of the fluid film, which allows one to approximate the three
dimensional Navier–Stokes equations by the bidimensional Reynolds equation (see [2] for
details). In lubrication, cavitation is one of the most relevant processes with important eco-
nomical implications in industry because of its effects. It is defined in Dowson–Taylor [13]
as the rupture of the continuous fluid film due to the formation of air bubbles inside, which
makes the Reynolds equation no longer valid in the cavitation area. One of the most used
models to describe cavitation is the Elrod–Adams model [19].

In [19], the authors introduce the hypothesis that the cavitation region is a fluid–air mixture
and an additional unknown θ appears (the saturation of fluid in the mixture). This model,
which still relies on the Reynolds equation has been widely used in Tribology [21]. Unlike
some other models, such as the variational inequality model, it does allow the starvation
phenomena to take place. Its interest also relies on the evidence that it is a mass-preserving
model. In [1,17] comparisons for journal bearings are made, between their operating para-
meters computed by the variational inequality and Elrod–Adams models.

Numerical methods for solving the Elrod–Adams model for cavitation in different devices
and conditions were presented in [3,7,17,18], among others. Similarly, numerical experimen-
tations of various schemes based both on stationary upwind methods and pseudo-stationary
techniques were conducted in [10].

These methods are mainly based on the characteristics discretization for the nonlinear
convection term and a duality method for the multivalued nonlinear saturation-pressure rela-
tion, posed by the Heaviside operator. Namely, they use an approach based on the (MC) to
discretize a total derivative in the final formulation. This technique was also used in [14–16]
among others, and it is the strategy we chose to solve the problem as well. Additionally,
they use a Yosida regularization for the Heaviside operator like in [8]. In contrast, we use a
regularization of this function by a cubic interpolating Hermite polynomial that allows us to
express the solution of the direct problem as a minimum of a convex functional. Section 3.2
is devoted to this new strategy.

On the other hand, most of the papers previously mentioned deal with imposed geometry
in the associated Reynolds equation, i.e. the gap function h for the journal bearing is a given
datum and the unknown is the pressure p. In real engineering applications the position of the
shaft in a journal bearing, that defines the gap function h, is unknown. So, Newton’s second
law is introduced to obtain that position. The problem consists in finding the pressure of
the lubricant, the concentration function ϑ in the cavitation area and the shaft position. The
problem is considered as an inverse problem where the coefficient h depends on the unknown
p (see [14,16]). In [16] the authors used an implicit Euler method to deal with the dynamical
shaft problem coupled with the fluid hydrodynamic problem. At each time step the resulting
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Fig. 1 Cross section of a journal bearing

nonlinear system is solved by the Broyden method combined with the Armijo–Goldstein
criterion to choose a proper step length in the descent direction. Note that this is a line-search
strategy. In Sect. 4, we propose a different approach to deal with this problem. It is based
on first solving the Elrod–Adams equation for a known position by minimizing a convex
and lower semi-continuous (l.s.c.) functional and then using an iterative method to reach the
equilibrium, namely a trust-region strategy.

In a sense, the line search and trust-region approaches differ in the order in which they
choose the direction and distance of the move to the next iterate. Line search starts by fixing
the direction and then identifying an appropriate distance (the step length). The trust-region
approach chooses a maximum distance, named the trust-region radius △k, and then seek a
direction and step that attain the best improvement possible subject to this distance constraint.
If this step proves to be unsatisfactory, we reduce the distance measure △k and try again.
We remark that both approaches are two of the fundamental strategies used in optimization
algorithms to generate a sequence of iterates [23].

The outline of the paper is the following. In Sect. 2 we describe the problem of loaded
journal bearing systems for stationary regime and pose a suitable variational formulation for
the hydrodynamic problem. In Sect. 3, we consider a finite element discretization and solve
the direct problem by using an approximation of the Heaviside function. Section 4 is devoted
to explaining the resolution of the inverse problem by a trust region algorithm. Numerical
test and discussion are provided in Sect. 5.

2 Mathematical model

2.1 Hydrodynamic model

In this section, we depict a 2D formulation of the hydrodynamic behaviour of lubricated
journal bearings. Figure 1 shows the cross section of a journal bearing. The inner cylinder,
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the shaft of radius Ra , rotates in counterclockwise direction. The film pressure generated by
the moving surfaces forces the lubricant through a wedge shaped zone of thickness h, which
varies according to the angle α.

We assume a coordinate system in which y represents a circumferential coordinate, z is a
coordinate across the fluid film and x depicts the journal bearing axial dimension, orthogonal
to the plane zy. The origin of coordinate y is located over the centers line Oc Oa , to place the
minimum gap of the device at an angle $ = π . On the other hand, the reference z = 0 is
taken on the bearing surface.

To simplify the computations, we introduce the following nondimensional variables

θ = y
Ra

, r = z
h

, x̄ = x
L

, ū = u
ωRa

, v̄ = v

ωC
, w̄ = w

ωRa
, (1)

where L represents the shaft length, C the radial clearance, h the fluid film thickness, (u, v, w)

the fluid velocity components and ω the angular speed. In addition, other functions and
coefficients are defined in relation to the dimensionless properties:

h̄ = h
ωC

, λ = L
Ra

, µ̄ = µ

µ0
, p̄ = pC2

µ0ωR2
a
, (2)

where µ denotes the viscosity, p is the fluid pressure and λ gives the ratio between the journal
radius and length.

The domain is transformed into a nondimensional domain ( = [0, 2π] × [0, 1] for the
(θ, x) coordinates, where the height is posed as:

h̄ = 1 + η cos(θ − α), (3)

where η stands for the eccentricity coefficient, defined as Oc Oa
C .

The governing equations for modelling the dynamic behaviour of a journal bearing system
for small fluid film thickness is the generalized Reynolds equation discussed in [20]. The
system takes the following form in the geometrical system (θ, r, x̄) for Newtonian fluids with
constant density (see [12]).

∂

∂θ

(
h̄3 F̄2

∂ p̄
∂θ

)
+ 1

λ2

∂

∂ x̄

(
h̄3 F̄2

∂ p̄
∂ x̄

)
= ∂

∂θ

(
h̄

[
1 − F̄1

F̄0

])
, (4)

where

F̄2 =
1∫

0

r
µ̄

(
r − F̄1

F̄0

)
dr, F̄1 =

1∫

0

r
µ̄

dr, F̄0 =
1∫

0

dr
µ̄

(5)

and µ̄ stands for the fluid constant viscosity.
We transform the domain into ( = [0, 2π ] × [0, λ] by introducing the new variable

x̃ = x̄λ. The cavitation phenomena are described by the Elrod–Adams model (see [6] for
details). It introduces an additional unknown, the saturation ϑ that represents the lubricant
concentration. Namely, it takes the value 1 in the lubricated region (+ and takes any other
value in the range [0, 1] within the cavitated region (0, + depicts the free boundary between
the lubricated region ((+) and the cavitated one ((0); n⃗ is the normal vector to +, i⃗ is the



A numerical approach to solve an inverse problem in lubrication theory 621

Fig. 2 Hydrodynamic domain
configuration
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unitary normal vector pointing to θ direction and ,0 is the boundary where lubricant is
supplied through. See Fig. 2 for details.

So, the hydrodynamic problem with cavitation is posed as follows:
To find (p,ϑ) such that:

∂

∂θ

(
h̄3 F̄2

∂ p̄
∂θ

)
+ ∂

∂ x̃

(
h̄3 F̄2

∂ p̄
∂ x̃

)
= ∂

∂θ

(
h̄

[
1 − F̄1

F̄0

])
, p̄ > 0 and ϑ = 1 in (+,

(6)
∂

∂θ

(
ϑ h̄

[
1 − F̄1

F̄0

])
= 0, p̄ = 0, 0 ≤ ϑ ≤ 1 in (0, (7)

h̄3 F̄2
∂ p̄
∂ n⃗

= (1 − ϑ)h̄
(

1 − F̄1

F̄0

)
cos(n⃗, i⃗), p̄ = 0 on +, (8)

p̄ = 0 on ,, ϑ = ϑ0 and p = p f on ,0, (9)

where ϑ0 and p f stand for the concentration on the groove supply and feeding pressure
respectively.

We define the parameter - = 1
F2

(
1 − F1

F0

)
and drop the superscripts ¯ of dimensionless

variables to simplify the notation. Then, we introduce the weak formulation of the problem:
Given ϑ0 ∈ L2(,0), verifying 0 ≤ ϑ0 ≤ 1, to find p ∈ H1((), 2π-periodic in θ, p = 0

on , and ϑ ∈ L∞(() such that:
∫

(

h3∇ p∇φ =
∫

(

(ϑh-)
∂φ

∂θ
+

∫

,0

(ϑ0h-)φ, ∀φ ∈ V,

ϑ ∈ H(p) =

⎧
⎪⎨

⎪⎩

1 : (p > 0),

[0, 1] : (p = 0),

0 : (p < 0),

(10)

where the space of test functions is given by:

V = {φ ∈ H1(()/φ|,−,0 = 0}.

2.2 Shaft stationary model

The balance of forces acting on a journal bearing is posed by Newton’s second law:

n∑

i=1

f⃗ = m
d2s⃗
dt2 , (11)

where f⃗i (for i = 1 . . . n) represents the forces applied upon the system.
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Thus, at the equilibrium position, i.e. d2 s⃗
dt2 = 0, the balance of forces is null. So, the load

applied to the system “ f = ( fθ , fx )” is equal to the force exerted by the pressure to the shaft
given by (

∫
( p(θ, x) cos θdθdx,

∫
( p(θ, x) sin θdθdx) i.e.

∫

(

p(θ, x) cos θdθdx = fθ , (12)

∫

(

p(θ, x) sin θdθdx = fx , (13)

where fθ and fx stand for the nondimensional components of the applied external load f⃗ .
Integrals stand for the force components generated by the lubricant pressure.

3 Discretization of the hydrodynamic model

By using integration by parts it is possible to rewrite Eq. (10) as follows:
∫

(

h3∇ p∇φ = −
∫

(

∂

∂θ

(
ϑh-

)
φ, ∀φ ∈ V,

ϑ = ϑ0 in ,0. (14)

For the numerical solution of Eq. (14), several techniques have been proposed. Mainly, the
existing literature combine the MC with the FEM. To introduce the MC to the problem in the
stationary case, we have adopted the technique based on introducing an artificial dependence
of time. In this manner, we define:

φ̂(θ, x, t) = φ(θ, x),

p̂(θ, x, t) = p(θ, x),

ĥ(θ, t) = h(θ),

ϑ̂(θ, t) = ϑ(θ).

Thus, we can write the right-hand side of Eq. (14) in terms of the total derivative, assuming
an artificial velocity v = 1. So,

D
Dt

= ∂

∂t
+ v

∂

∂θ
= ∂

∂t
+ ∂

∂θ
,

then, in the case of a stationary regime we have:

D
Dt

= ∂

∂θ
.

For simplicity in the notation we drop the superscripts ˆ of variables from now on. Thus, the
problem in Eq. (14) is formulated as the stationary state of the following transient problem:

∫

(

h3∇ p∇φ = −
∫

(

D
Dt

(
ϑh-

)
φ, ∀φ ∈ V,

ϑ = ϑ0 in ,0. (15)
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3.1 The method of characteristics

Let χ(θ, t; τ ) denote the position at time τ of a particle of fluid moving according to the
velocity field v, and placed at the point θ at the reference time t . That is, χ is the solution to
the final value problem:

∂

∂τ

(
χ(θ, t; τ )

)
= v(χ(θ, t; τ )),

χ(θ, t; t) = θ .

So, the approximation of the total derivative is accomplished by using an upwind schema
which follows the trajectory (or characteristics) of particles being analyzed.

We introduce the following notation:

– △t is the time step.
– tn = n△t .
– χn(θ) = χ(θ, tn+1; tn) denotes the position at time tn of a particle placed at the point θ

at time tn+1, when it moves according to the artificial velocity field v.
– gn+1(θ) = g(θ, (n + 1)△t).

With the above notation we consider:

Dg
Dt

(θ, tn+1) ≈ gn+1(θ) − gn(χn(θ))

△t
. (16)

As in fact the time dependence is fictitious, functions gn+1(θ) and gn(θ) are the same,
and thereby we can recast Eq. (16) as:

Dg
Dt

(θ) ≈ g(θ) − g(χk(θ))

k
, (17)

where k plays the role of the artificial time step and χk(θ) denotes the position at time t − k
of a particle placed at the point θ at time t .

Then, substituting Eq. (17) into Eq. (15) yields k-dependent problem sets, that approximate
the original problem in Eq. (15) as:

∫

(

h3∇ p∇φ + 1
k

∫

(

ϑh-φ = 1
k

∫

(

(
ϑh-

)
◦ χkφ, ∀φ ∈ V, ϑ ∈ H(p). (18)

At this point we proposed a fixed-point algorithm to define pn+1 as the solution of the
following problem:
∫

(

h3∇ pn+1∇φ + 1
k

∫

(

ϑn+1h-φ = 1
k

∫

(

(
ϑnh-

)
◦ χkφ, ∀φ ∈ V, ϑn+1 ∈ H(pn+1),

(19)

which in fact is similar to the strategy of making time tends to infinity until reaching the
stationary state.

3.2 The regularization approach for the Heaviside function

The problem under study is nonlinear at each time step, because the Heaviside function H(p).
A particular regularization technique has been widely used for dealing with the Heaviside
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function discontinuity, namely in [10,16] among others. They adopted a duality type method
consisting in applying an algorithm proposed by Bermúdez and Moreno [8] with a Yosida
regularization for the Heaviside operator.

We propose a regularization approach by a cubic interpolating Hermite polynomial for
the Heaviside function, which is derived following a divided difference schema [24]. With
that selection we may express the solution as a minimum of a convex functional at each
time iteration. On the other hand, a Yosida regularization approach needs a different iterative
procedure to deal with since the convexity of the functional could not be guaranteed in the
same way. In this manner, we define the approximation function Hϵ for the Heaviside’s as
follows:

Hϵ(s) =

⎧
⎪⎨

⎪⎩

1 : (s > ϵ),
1
ϵ3 (3ϵs2 − 2s3) : (0 ≤ s ≤ ϵ),

0 : (s < 0).

(20)

So, from now on, ϑϵ = Hϵ(p).

3.3 The associated functional

In this section we propose a functional whose minimum is the solution to Eq. (19).

Lemma 1 Let Jϵ be the following functional:

Jϵ(p) = 1
2

∫

(

h3|∇ p|2 + 1
k

∫

(

h-$ϵ(p) − 1
k

∫

(

(
ϑh-

)
◦ χk p, (21)

where function $ϵ(p) is defined as:

$ϵ(s) =

⎧
⎪⎨

⎪⎩

s − 1
2ϵ : (s > ϵ),

1
ϵ3

(
ϵs3 − 1

2 s4) : (0 ≤ s ≤ ϵ),

0 : (s < 0).

(22)

Then, Jϵ is convex, l.s.c. and lim p→∞ Jϵ(p) = ∞ for any ϵ < 0.

Proof Notice that $ϵ is C2, its second derivative is nonnegative and the rest of the terms
in Jϵ are convex and l.s.c. Then, we have that Jϵ is l.s.c. and convex. A standard argument
proves that lim p→∞ Jϵ(p) = ∞. Thanks to Corollary III.20 in [9], pϵ (the minimum of Jϵ)
is the unique solution to the penalized problem

∫

(

h3∇ pϵ∇φ +1
k

∫

(

ϑh-φ = 1
k

∫

(

(ϑϵh-) ◦ χkφ, ∀φ ∈ V,

ϑϵ ∈ Hϵ(pϵ). (23)

Since Hϵ ≤ 1, we have that pϵ is uniformly bounded in H1((). So, there exists a
subsequence pϵi which converge weakly to p∗ which satisfies (18). Since the solution to
(18) is unique (see Bayada, Martin, Vázquez [5]) we have that any other subsequence pϵ j
converges to p. ⊓/

On the other hand, and taking advantage of the region under study we perform the spatial
approximation by piecewise quadrangular Lagrange Q1 finite elements. That is, p and ϑ are
approximated as follows:



A numerical approach to solve an inverse problem in lubrication theory 625

p ≈ ph =
n∑

j=1

N j p j , (24)

ϑ ≈ ϑh =
n∑

j=1

N jϑ j , (25)

where sub-index h stands for the finite element approximation. Now, we solve by a fixed-point
iteration the discretized problem:

∫

(

h3∇ pn+1
h ∇φh + 1

k

∫

(

ϑn+1
h h-φh = 1

k

∫

(

(ϑn
h h-) ◦ χkφh,

ϑn+1
h = Hϵ(pn+1

h ), (26)

which must minimize at each iteration the following functional:

J (pn+1
h ) = 1

2

∫

(

h3|∇ pn+1
h |2 + 1

k

∫

(

h-$ϵ(pn+1
h ) − 1

k

∫

(

(ϑn
h h-) ◦ χk pn+1

h . (27)

To perform the minimization stage we use the algorithm L-BFGS [23], with the line search
approach by Moré and Thuente [22]. The L-BFGS algorithm is useful in this case as we are
dealing with a large scale problem whose Hessian matrix cannot be computed at a reasonable
cost [23].

4 Inverse problem resolution

We first consider the balance of forces involved in the problem, see Sect. 2.2. We define the
residual R as follows:

R(η, α) =
[

fθ −
∫
( p(η, α, θ, x) cos θdθdx

fx −
∫
( p(η, α, θ, x) sin θdθdx

]
. (28)

The numerical approach is to minimize the L2-norm of the residual R in least squares
sense, i.e. min∥R∥2

2. We note that to obtain the pressure p, two unknown parameters are
needed: η ∈ [0, 1] and α ∈ [0, 2π) which determine the shaft position in the system. We
use an iterative method in the set of admissible positions (η, α) in order to minimize ∥R∥2

2,
where p is the solution to the hydrodynamic problem Eqs. (6–9) whose coefficients depends
on η and α.

For the optimization routine we propose a trust-region algorithmic strategy [23]. Following
the idea behind a trust-region method, the information gathered about R is used to construct
an approximation of R in a neighborhood of dk (the trust region) which we denote by mk .
We find the step sk = dk+1 − dk by solving the following subproblem:

min
sk∈IR2

mk(dk + sk), where dk + sk lies inside the trust region. (29)

Let He and G be defined by:

He(dk)
def= ∇2 R(dk), G(dk)

def= ∇ R(dk)

Then, let l and u be the lower and upper bounds of dk , we define a vector function
r(dk) : IRn → IRn as follows:
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Definition 1 The vector r(dk) ∈ IRn is defined:

(i) if G(dk)i < 0 and ui < ∞, then ri
def= (dk)i − ui ,

(ii) if G(dk)i ≥ 0 and li > −∞, then ri
def= (dk)i − li ,

For any a ∈ IRn, diag(a) denotes an n-by-n diagonal matrix with the vector a defining
the diagonal entries in their natural order. So, we define:

D(dk)
def= diag

(
|r(dk)|−

1
2

)
.

In this manner and because we are facing a determined nonlinear system of equations
and a bounded admissible set of parameters, we propose the following scaled trust-region
subproblem as in [11].

min
sk∈IR2

mk(s)
def= sT

k Gk + 1
2

sT
k Mksk

where

Jr (dk)
def= diag(sgn(G(dk))), (30)

C(dk)
def= D(dk)diag(G(dk))Jr (dk)D(dk), (31)

M(dk)
def= B(dk) + C(dk), (32)

where B(dk) is the discretization of He.
As the notation indicates, mk and R are in agreement to first order at the current iterate

dk . The matrix Mk and the diagonal matrix Dk are chosen this way such that there is no
need to handle constraints explicitly. Since the quadratic model mk is defined to include the
constraint information, a natural extension to the classical ρk definition (see [23]) also takes
place and it is given by:

ρk
def= R(dk + sk) − R(dk) + 1

2 sT
k C(dk)sk

mk(sk)
, (33)

see [11] for a wide explanation on this selection. With this approach, it is possible to obtain an
approximate trust-region solution which can guarantee second-order convergence by simply
solving an unconstrained trust-region subproblem. Each iteration involves the approximate
solution of the system using the method of preconditioned conjugate gradients. When the
squared 2-norm of R is small enough in correspondence with the tolerance chosen the algo-
rithm finishes.

5 Numerical results and discussion

The mathematical formulation of the cavitation free boundary problem of this research was
performed by the well known Elrod–Adams model, which includes a nonlinear term given
by the Heaviside function.

We considered a regularization of this function by a cubic interpolating Hermite polyno-
mial, which allowed us to find a suitable convex functional to minimize, whose minimum is
the solution to the penalized direct problem. The classical approach mentioned in Sect. 3.2,
by the Yosida regularization, uses a different iterative procedure. The minimization stage was
performed via the algorithm L-BFGS with the line search approach by Moré and Thuente
[22].
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Table 1 Geometrical, physical
and numerical constants

Parameter Symbol Value

Journal bearing clearance C 36 × 10−6

Journal bearing length L 1
Shaft radius Ra 1
Feeding pressure p f 0.5

External force ∥ f ∥ 3
Viscosity coefficient µ 0.01
Heaviside approximation coefficients ϵ 0.2
Initial eccentricity η0 0.3
Initial alpha coordinate α0 0
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Fig. 3 Dimensionless pressure contour maps for different ϵ values, for η = 0.8

In this section, we also present numerical tests which try to verify the performance and
coupling of the different numerical approaches involved. For this, a 50 × 50 finite element
regular mesh (2,500 rectangles with 4 nodes each) for ( = [0, 2π]× [0, λ] was used. Unless
other values are specified, the geometrical, physical and numerical constants used during the
experiments are those in Table 1. All constants are dimensionless.

In Fig. 3, different dimensionless pressure contour maps are presented. They show the
behaviour of the solution of the direct problem (for η = 0.8) with respect to the penal-
ization parameter ϵ, when it tends to zero. The ϵ values chosen for the experiment are
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Fig. 4 The concentration
contour map ϑ for ϵ = 0.2 and
η = 0.8
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Fig. 5 The journal bearing
equilibrium positions for
f⃗ = (0, −3) and
v1 = 1, v2 = 2, v3 = 3, v4 = 4
and v5 = 5
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The results are similar to the ones obtained by Durany et al. [15] using a different strategy.

Figure 4 shows the concentration map related to Fig. 3a. Notice the concentration pattern
on the groove supply.

For the resolution of the inverse problem, we introduced the residual function R in Eq.
(28), which allowed us to find an easy way to pose the inverse problem as a constrained
minimization problem. The choice of a trust-region algorithmic strategy to solve the problem
allowed a solution where it is not necessary to handle constraints explicitly. Thus, it is possible
to obtain an approximate trust-region solution which can guarantee second-order convergence
by simply solving an unconstrained trust-region subproblem, see Sect. 3.2 for details.

Figure 5 shows the output of our whole numerical approach when a dimensionless force
f⃗ = (0,−3) is applied to the journal bearing. The equilibrium positions are obtained for
different velocities: v1 = 1, v2 = 2, v3 = 3, v4 = 4 and v5 = 5.

Figure 6a shows the journal bearing equilibrium position when roughness is consid-
ered. For this case a force f⃗ = (0,−3) was also applied. The gap function used
was: h = 1 + β + β cos(13θ) + η cos(θ − α) where β stands for the periodic
roughness. The β value chosen was: 0.3. Figure 6b shows the response force dis-
turbance depending on the journal bearing geometry with the same periodic rough-
ness. Here, the direct problem is solved for shaft positions corresponding to α =
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Fig. 6 Simulation of a journal bearing with periodic roughness β = 0.3. For this case the gap function used
was: h = 1 + β + β cos(13θ) + η cos(θ − α)

Fig. 7 The behaviour of η with
respect to ∥ f ∥
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e−01, 4.03e−01, 4.43e−01, 4.83e−01 and η = 0.8.

Finally, Fig. 7 shows the behaviour of η with respect to ∥ f ∥ at the equilibrium positions,
illustrating how the eccentricity approaches to one when increasing the applied load. The
simulation is taken for h = 1 + η cos(θ − α).

6 Conclusions

It is possible to find a numerical solution to the hydrodynamic Reynolds equation with the cav-
itation model of Elrod–Adams, under the assumptions made in this research, by minimizing
the convex functional proposed in Sect. 3.3 for the direct problem.



630 H. Lombera, J. I. Tello

It is possible to address the inverse problem related to this research by first posing a system
of nonlinear equations and then solving it, in least squares sense, by a trust-region numerical
approach. In this context, it provides another way of solution, different to the ones existing
at this point.

The numerical simulations show that the force exerted by the pressure depends continu-
ously on the geometry of the surfaces and the velocity of the shaft.

We note that, as ∥ f ∥ increases, the eccentricity increases in a continuous and monotone
way as far as the model is valid (i.e. for experimental values |1 − η| > 10−3).
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