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Abstract. We study the existence of solutions to a system of equations for equilib-
rium positions in lubricated journal bearings under load effects. The mechanism under
consideration consists of two parallel cylinders, one inside the other, in close distance
and relative motion. The unknowns of the problem are the equilibrium position of the
inner cylinder and the pressure of the lubricant described by the compressible Reynolds
equation. To complete the system, Newton’s second law gives the equilibrium of forces.
We present results on existence of solutions for a range of applied forces F .

1. Introduction. We consider a lubricated journal bearing system for compressible
fluids. The system consists of two parallel cylinders, one inside the other in close prox-
imity, where a shaft or journal (the inner cylinder) rotates freely in a shell (the exterior
cylinder). A compressible fluid, the lubricant, fills the gap between the cylinders to avoid
contact. An external force F = (F1, F2) ∈ R2 is applied on the inner cylinder, which
turns with a known velocity, assumed constant.

The external force produces a displacement of the shaft that generates a high pressure
region. That high pressure originates a hydrodynamic force that counteracts the external
force. We assume that the distance “h” between the two cylinders satisfies the thin-
film hypothesis, so that the pressure does not depend on the normal coordinate to the
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cylinders and satisfies the compressible Reynolds equation
⎧
⎨

⎩
−div(Q(hp)h3p∇p) = −6νU

∂

∂θ
(hp) in (0, 2π] × (0, 1),

p = pa on x = 0 and x = 1,

where Q is the relative flow rate, ν is the lubricant viscosity (assumed constant), U is
the velocity of the surface and pa is the atmospheric pressure. We assume that ν, U and
pa are positive given constants.

As a first approximation, Q is considered constant in the “continuum Reynolds equa-
tion” (see [2]). Subsequent models use better approximations of Q, assuming it to be
dependent on the magnitude of “h”. In this paper we consider one such model, the
so-called first-order slip model (see Burgdorfer [3]):

Q(ph) = 1 +
λ̃

ph
, (1.1)

where λ̃ is the molecular mean free path of air. This model allows us to take into account
the rarified gas effects when the distance h is smaller than 0.1µm.

Some other alternative expressions for Q have been proposed in the literature. For
instance, the second-order slip model, where Q presents a second order term, i.e.

Q(ph) = 1 +
λ̃

ph
+

a1

(ph)2

or the Fukui Kaneko model (see [8]).
In this problem, the position of the shaft is unknown and is defined by the displacement

of its center. Since we only consider displacements which keep the cylinders on parallel,
the position is defined by two parameters, the radial coordinate of the displacement “η”
((η1, η2) in cartesian coordinates) and the angular coordinate “α”. The coefficient “h”
approximates the distance between the cylinders, and after renormalization it is given
by

h(θ, η,α) = 1 − η cos(θ − α) = 1 − η1 cos θ − η2 sin θ. (1.2)

The problem we address in this paper is to find the shaft equilibrium position “(η,α)”
and the pressure “p” of the lubricant for a given constant force F = (F1, F2) ∈ R2, such
that

p : (θ, x) ∈ Ω → R
satisfies the compressible Reynolds equation, which, after renormalization, is given by

⎧
⎪⎨

⎪⎩

−div((h3p + λh2)∇p) = −Λ
∂hp

∂θ
, (θ, x) ∈ Ω,

p is 2π − periodic in θ,
p(θ, 0) = p(θ, 1) = pa, θ ∈ [0, 2π),

(1.3)

where h is defined in (1.2), Ω = (0, 2π] × (0, 1) ⊂ R2, λ = λ̃/h0, Λ is a nondimensional
constant defined by

Λ :=
6νU

(R1 − R0)2

and R1 − R0 is the difference between the radii of the cylinders.
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AN INVERSE PROBLEM FOR THE COMPRESSIBLE REYNOLDS EQUATION 609

To set the problem we have to take into account the balance of forces acting on the
journal. If we denote by s = (s1(t), s2(t)) the displacement in cartesian coordinates,
thanks to Newton’s second law we have

m
ds1

dt
= F1 −

∫

Ω
p cos θdθdx, m

ds2

dt
= F2 −

∫

Ω
p sin θdθdx.

Since at the equilibrium position there is no displacement, i.e. s′ = 0, we have
∫

Ω
p cos θdθdx = F1,

∫

Ω
p sin θdθdx = F2. (1.4)

To the best of the authors’ knowledge, only a few works studying the existence of
inverse problems in lubricated devices for compressible fluids have been published. In
the literature we can find some results for sliders, i.e. systems where a surface slides
above a plane; see Hafidi [9] for more details. For the incompressible case there is a
larger number of references, mainly concerning numerical simulations. See for instance
[7], [5], [6] and the survey [1] for more details.

Below, we present the main result of the article.

Theorem 1.1. There exists ϵ > 0 such that, for any F ∈ R2 satisfying

|F | = |F 2
1 + F 2

2 | 1
2 < ϵ, (1.5)

the system (1.3), (1.4) has at least one weak solution.

This result means that the set of admissible external forces (those for which the
existence of solutions takes place) contains the range of forces whose magnitude does
not exceed a certain threshold ϵ. The definition of ϵ is given in the proof of the theorem
(see (2.5)) and it is defined in terms of integrals. Clearly, problem (1.3), (1.4) admits a
solution for any F ∈ R2 if ϵ = ∞. The question of the boundedness of ϵ remains open
and the answer may depend on the geometry of h.

In the incompressible case (see [5]) it is possible to compute explicitly ϵ by using a sub-
and super-solution method for a large group of geometries. In our problem that method
cannot be applied directly due to the nonlinear terms of the compressible Reynolds
equation.

The notion of solution used in Theorem 1.1 corresponds to the standard definition of
weak solution for the Reynolds equation. For the reader’s convenience, in the following
section we include that definition and also some known results on degree theory that are
used in Section 3 to prove Theorem 1.1.

2. Preliminaries. We first start with the notion of admissible displacements of the
inner cylinder, defined through the following set:

A :=
{
(η1, η2) ∈ R2 : η2

1 + η2
2 < 1

}
=

{
(η,α) ∈ R+ × [0, 2π), η < 1

}
.

Notice that the function h defined in (1.2) is positive for every θ ∈ [0, 2π) if and only if
(η1, η2) ∈ A.

Let us define the following functional space:

V (Ω) := {φ ∈ H1(Ω) : φ is 2π-periodic in θ and φ(θ, 0) = φ(θ, 1) = 0}
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with the norm

∥φ∥V :=

∫

Ω
|∇φ|2.

For the known standard notion of weak solutions we have

Definition 2.1. A weak solution to (1.3), (1.4) is a triplet (p, η,α), such that

p − pa ∈ H1
0 (Ω) ∩ L∞(Ω), p ≥ 0,

(η,α) ∈ A and
∫

Ω
(h3(η,α)p + λh2(η,α))∇p∇φ = Λ

∫

Ω
ph(η,α)

∂φ

∂θ
, (2.1)

for any φ ∈ V (Ω), where p also satisfies (1.4) for h(η,α) given in (1.2).

Some known results in degree theory.
For completeness, we briefly cite some definitions and results that are used in the last

section to prove Theorem 1.1.
Let S ⊂ Rn be a bounded open subset with regular boundary ∂S and let f : S → Rn

be a C1(S) function. Let y0 ∈ Rn be such that y0 ̸∈ f(∂S) and Df(x) is invertible for all
x ∈ f−1(y0). Then, f(x) = y0 has either no solutions in S or a finite number of solutions:
x1, x2, · · · , xr with det(Df(xi)) ̸= 0 for i = 1, 2, · · · , r.

Definition 2.2. The degree of the function f in the subset S at the point y0 is defined
as

deg(f, S, y0) :=

⎧
⎪⎨

⎪⎩

0, if r = 0,
r∑

i=1

sign(det(Df(xi))), if r ̸= 0.

Remark 2.3. In the particular case of a linear function f(x) = Ax with det(A) ̸= 0,
the previous definition may be written as

deg(Ax, S, y0) :=

{
0, if y0 ̸∈ f(S),
sign(detA), if y0 ∈ f(S).

The previous definition is extended to continuous maps; see for instance [10, Extension
Lemma, p. 60]. The following result is used in the proof of the theorem (see [10, Corollary
4 to Theorem 1.12, p. 81] for more details).

Theorem 2.4. Let S be a bounded open set in Rn. Let f0 and f1 be continuous functions

fi : S → Rn for i = 0, 1.

We also assume that S is a star-shaped domain with respect to y0 ∈ S such that

[f0(x) − y0] · [f1(x) − y0]
t > 0, for any x ∈ ∂S,

where vt denotes the transpose vector of v. Then,

deg(f0, S, y0) = deg(f1, S, y0).

Remark 2.5. Notice that if deg(f, S, y0) ̸= 0, we obtain the existence of at least one
solution x ∈ S to the equation f(x) = y0.
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Continuous dependence of p with respect to h.
In the following we prove a lemma concerning the continuity of a solution of (1.3) (i.e.

the direct problem) with respect to h.

Lemma 2.6. Let hi ∈ L∞(Ω), for i ∈ N, such that

0 < h ≤ hi(x) ≤ h < ∞, x ∈ Ω, (2.2)

for some positive constants h and h such that

hi → h0, in L∞(Ω), as i → ∞.

Let pi be the solution of
⎧
⎨

⎩
−div((h3

i pi + λh2
i )∇pi) = −Λ

∂hipi

∂θ
, in Ω, for i ∈ N,

p = pa, x ∈ ∂Ω.
(2.3)

Then

∥pi − p0∥Lq(Ω) → 0, as i → ∞,

for any q < ∞.

Proof. We first obtain a priori estimates in H1(Ω) using pi − pa as a test function in
(2.3) ∫

Ω
(h3

i pi + λh2
i )|∇pi|2 ≤ Λ

∫

Ω
hipi|∇pi|.

Since

hipi|∇pi| ≤ h3
i pi|∇pi|2 +

1

4hi
pi,

1

4hi
pi =

1

4hi
(pi − pa) +

pa

4hi

and ∫

Ω

1

4hi
(pi − pa) ≤ C1(Ω, h)∥∇p∥L2(Ω),

we have

∥∇pi∥L2(Ω) ≤
1

h2

(
pa

2h
+ C2

1 (Ω, h)

)
.

Since pi = pa in ∂Ω, we have that pi is uniformly bounded in H1(Ω), and therefore
there exists a subsequence pij ⇀ p∗ in the weak topology of H1(Ω). By uniqueness of
weak solutions of (2.3) (see [4]), we obtain that p∗ = p0. Besides, any other sequence or
subsequence of pi converges weakly to p0 in H1(Ω). Thanks to the Rellich-Kondrachov
Theorem, we have that H1(Ω) ↪→ Lq(Ω) is a compact embedding for every q < ∞. This
completes the proof. !

A technical lemma.
Now, we present a technical lemma concerning the positivity of the V (Ω)-norm of

p − pa.
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Lemma 2.7. We denote by pη,α the solution to (1.3) for a given (η,α) ∈ A. Then for
any η > 0 we have that

ϵ(η) =
1

ηΛ

∫

Ω
(h3p + λh2)

|∇pη,α|2

p
> 0.

Proof. First, we notice that for a given (η,α), the corresponding solution pη,α satisfies

pη,α(θ, x) = pη,α−γ(θ − γ, x), (2.4)

for any γ ∈ (0, 2π). This fact is a consequence of the symmetry of h, and the proof
follows by direct substitution in (1.3) and the uniqueness of solutions of (1.3).

As a consequence of (2.4), we have that
∫
Ω |∇pη,α|2 is independent of α. It is easy to

check that for any η > 0, pη,α = pa is not a solution to the problem. Therefore, thanks
to the boundary conditions and property (2.4), we know that

∫

Ω
|∇pη,α|2 > 0

and we have

ϵ(η) =
1

ηΛ

∫

Ω
(h3p + λh2)

|∇pη,α|2

p
>

min{h3}
ηΛ

∫

Ω
|∇pη,α|2 =

(1 − η)3

ηΛ

∫

Ω
|∇pη,α|2 > 0,

and the proof ends. !

Corollary 2.8. There exists ϵ ≤ ∞ defined by

ϵ := sup
η∈(0,1)

ϵ(η) (2.5)

such that ϵ > 0.

3. Proof of Theorem 1.1. As in [5], the proof of the theorem is based on a fixed
point argument; hence we introduce an auxiliary function G = (G1, G2) := A → R2

defined by

G1(η,α) :=

∫

Ω
pη,α cos θ − F1, G2(η,α) :=

∫

Ω
pη,α sin θ − F2, (3.1)

where pη,α is a solution to (1.3) for a given (η,α) ∈ A. Notice that G represents the
balances of forces when the inner cylinder is at a fixed position (η,α). The equilibrium
solutions of the problem are defined by the zeros of G. As in [5] we compute the degree
of G to obtain the existence of at least a zero of G which gives the existence of solutions
to the inverse problem.

Notice that, since η ∈ [0, 1), h satisfies

0 < 1 − η ≤ h ≤ 1 + η ≤ 2, (3.2)

which implies that for any fixed (η,α) ∈ A there exists a unique weak solution to (1.3)
(see [4] for details). As a consequence of the uniqueness of the direct problem (for a given
(η,α)), G is well defined, and thanks to Lemma 2.6, G is a continuous function in A.

By Theorem 3.4 and Corollary 3.6 in [4] we know that p ∈ L∞(Ω) and

p ≥ C > 0,
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where C is a positive constant depending on Ω, pa, λ, Λ and η but, in view of (2.4),
independent of α. Now, we choose η < 1 such that ϵ(η) defined in Lemma 2.7 satisfies

ϵ(η) > |F |. (3.3)

Notice that by assumption (1.5) and Corollary 2.8 such η exists. Since G is not defined in
∂A, it is not possible to obtain the degree of G in A; hence we have to define a compact
set where G is well defined. We define Aη ⊂ A as

Aη :=
{
(η1, η2) ∈ R2 : η2

1 + η2
2 ≤ η

}
=

{
(η,α) ∈ R+ × [0, 2π), η ≤ η

}

and compute the degree of G in Aη. We first consider the auxiliary field W : Aη → R2

defined by

W (η1, η2) = (−η2, η1) = (−η sinα, η cosα).

It is clear that by the linearity of W , deg(W, Aη, y0) = 1 for any y0 ∈ W (Aη) = Aη.
In order to apply Theorem 1.12 in [10] (see Theorem 2.4 in the previous section) we
compute the product G · W t in the circumference ∂Aη:

G · W t = η

(
−
∫

Ω
p cos θdθdx sinα +

∫

Ω
p sin θdθdx cosα + (F2 cosα − F1 sinα)

)
.

Let us define U⃗ = (Λ, 0), take φ = log p
pa

as a test function in (1.3) and integrate by
parts to obtain

∫

Ω
(h3p + λh2)

|∇p|2

p
= Λ

∫

Ω
h
∂p

∂θ
= −

∫

Ω
p∇hU⃗ +

∫

∂Ω
hpaU⃗ n⃗.

Since h is independent of x and paU⃗ n⃗ is constant in x = 0 and x = 1, we have
∫

∂Ω
hpaU⃗ n⃗ = paU1

∫ 2π

0
h(θ, 0) − paU1

∫ 2π

0
h(θ, 1) = 0

and therefore
∫

Ω
(h3p + λh2)

|∇p|2

p
=

∫

Ω
hU⃗∇p = −

∫

Ω
p∇hU⃗ = −Λ

∫

Ω
p
∂h

∂θ
. (3.4)

Notice that

−Λ

∫

Ω
p
∂h

∂θ
= Λ

∫

Ω
pη sin(θ − α) = Λη

[(∫

Ω
p cos θ,

∫

Ω
p sin θ

)
· (− sinα, cosα)t

]
.

Then, ∫

Ω
(h3p + λh2)

|∇p|2

p
= Λη[(

∫

Ω
p cos θ,

∫

Ω
p sin θ) · (− sinα, cosα)t]

= Λη(G + F ) · (− sinα, cosα)t = Λη(G · (− sinα, cosα)t − F1 sinα + F2 cosα).

Since

G · (− sinα, cosα)t =
1

Λη

∫

Ω
(λh2 + h3p)

|∇p|2

p
+ (F1 sinα − F2 cosα)

we have

G · (− sinα, cosα)t ≥ 1

Λη

∫

Ω
(λh2 + h3p)

|∇p|2

p
− |F | = ϵ(η) − |F |.
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By Corollary 2.8 we have that, thanks to assumption (3.3),

G · (− sinα, cosα) ≥ ϵ(η) − |F | > 0,

which implies G · W t > 0 in ∂Aη. By Theorem 2.4, both fields G and W have the same
degree in Aη. Since deg(W, Aη) = 1 we have that

deg(G, Aη) = 1,

which gives us the existence of at least a zero (η∗,α∗) ∈ Aη of G. The proof of the theorem
ends taking p∗ as the unique solution to (1.3) with h defined in (1.2) for (η,α) = (η∗,α∗).
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