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Abstract. We study a nonlinear system of differential equations describing the evolution of a competitive two-species chemo-
taxis system with two chemicals in a bounded domain. The system consists of four PDEs, two equations of parabolic type
describing the evolution of the competitive species and two elliptic equations modeling the distribution of the chemicals.
By introducing global competitive/cooperative factors, we obtain, for different ranges of parameters, that any positive and
bounded solution converges to a spatially homogeneous state. The proofs rely on the comparison principle for spatially
homogeneous sub- and super-solutions. The existence and uniqueness of global classical solution are proved under assump-
tions on the initial data and appropriate conditions on the parameters of the system. Such solution stabilizes to spatially
homogeneous equilibria in the large time limit, given coexistence or extinction of solutions for a range of parameters.

Mathematics Subject Classification. 35B40, 35B35, 35K57, 92C17.

Keywords. Chemotaxis, Global existence of solutions, Rectangle method, Asymptotic behavior.

1. Introduction

One of the mathematically challenging problems in the population dynamics is finding conditions under
which all of the populations coexist. Since 1970s, chemotaxis has been studied from a mathematical
point of view, starting with the first models of PDEs which were suggested by Keller and Segel [10,11],
the mathematical bibliography is extensive, more details about obtained results in the area during the
last decades can be found in [1,6,7,12,14–16]. To model the movement of several species according to
the mechanism of chemotaxis, the classical Keller–Segel model was extended to some multi-species case.
We consider a system describing the evolution of two competitive species u1 and u2 with chemotactic
movement. One of the first mathematical models in population dynamics is the well known Lotka–
Volterra system (see [13] and [27]), the system consists of two ordinary differential equations describing
the evolution of a predator u1 and a prey u2, of the form

u1t = g1(u1, u2), u2t = g2(u1, u2).

If the species diffuse, the system describing their concentrations becomes a reaction diffusion system,
already considered by Turing [26] in 1952 for the linear case and widely studied after him. There also
exist common examples in nature, where the biological species detect the other species by the chemical
secreted by the second one, moving toward a higher concentration of the chemical (chemotaxis) or away
from it (chemorepulsion). Different types of situation may occur depending of the chemotactic coefficients
and the competitive terms given by gi.

In this article, two different aspects of the interaction are considered:
• The competition between the species is presented by the functions gi, for i = 1, 2 whose expressions

are the following
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g1(u1, u2) = μ1u1(1 − u1 − a1u2),
g2(u1, u2) = μ2u2(1 − a2u1 − u2),

where the coefficients ai and μi (for i = 1, 2) are positive given data, assumed constants.
• “The chemotactic movement” of the species is due to chemical substances secreted by the other

species. These type of interactions are determined by the sign of the chemotactic coefficients, which
can be positive or negative, moving toward higher or lower concentrations of the substance secreted
by the other species which is directly related to its density.

Considering the sign of the chemotactic coefficient, we have the following classification of the system:

1. χi = 0, i = 1, 2. The biological species do not interact via chemical substances.
2. χi �= 0, i = 1, 2.

(a) χi > 0, i = 1, 2. Even there is competition between the biological species, they approach each
other moving toward a higher concentration of the chemical secreted by the other species.

(b) χi < 0, i = 1, 2. The species are mutually repelled, so both ui, i = 1, 2 move toward the lower
concentration of the chemical secreted by the other species.

(c) χ1 > 0, χ2 < 0 or χ1 > 0, χ2 < 0. One of the species moves toward the higher concentra-
tion of the chemical secreted by the other species, while the second one moves to the lower
concentration of the chemical secreted by the other one.

3. χ1 �= 0, χ2 = 0. The species u2 does not present chemotactic movement, while the movement of the
species u1 is oriented by the chemical secreted by u2. In this case, the system is reduced to a system
of three equation where two types of systems appear:
(a) χ1 > 0, χ2 = 0. u1 moves toward the higher concentration of the chemical secreted by u2 which

is directly related with the higher concentration of u2.
(b) χ1 < 0, χ2 = 0. u1 moves toward low concentrations of the chemical secreted by u2 trying to

avoid the other species.

For the population densities u1, u2 and the concentrations of the chemoattractants v1, v2, the classical
models lead to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u1

∂t
= d1Δu1 − χ1∇ · (u1 · ∇v1) + g1(u1, u2), x ∈ Ω, t > 0,

∂u2

∂t
= d2Δu2 − χ2∇ · (u2 · ∇v2) + g2(u1, u2), x ∈ Ω, t > 0,

−Δv1 + α1v1 = β1u2, x ∈ Ω, t > 0,

−Δv2 + α2v2 = β2u1, x ∈ Ω, t > 0,

(1.1)

where di > 0 are the diffusion coefficients, χi are the chemorepulsion coefficients, αi > 0, βi > 0 for
i = 1, 2 and Ω is a bounded, open regular domain of Rn, for n ≥ 1 with regular boundary. We assume
Neumann boundary conditions

∂u1

∂ν
=

∂u2

∂ν
=

∂v1

∂ν
=

∂v2

∂ν
= 0, x ∈ ∂Ω, t > 0, (1.2)

and bounded initial data

u1(0, x) = u0
1(x), u2(0, x) = u0

2(x), x ∈ Ω, (1.3)

satisfying

u0
i (x) ∈ C2+α(Ω),

∂u0
i

∂ν
= 0 in ∂Ω, u0

i ≤ u0
i (x) x ∈ Ω, (1.4)
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for some α > 0 and u0
i > 0 for i = 1, 2,. Throughout the present article, we consider the system under

the restrictions

2|χ1|β1 + μ1a1 < μ2, (1.5)

2|χ2|β2 + μ2a2 < μ1, (1.6)

for positive coefficients ai, for i = 1, 2 and χi ∈ R.
Assumptions (1.5) and (1.6) restrict the study to the case where the reaction terms are dominant in

comparison with the chemotactic terms.
The main results of the paper describing the global existence of solutions of (1.1)–(1.3) and its as-

ymptotic behavior are enclosed in the following theorem.

Theorem 1.1. Under assumptions (1.4)–(1.6), for any nonnegative initial data (u0
1, u

0
2) as in (1.4), there

exists a unique solution to (1.1)–(1.3) satisfying

ui, vi ∈ C
2+α,1+ α

2
x,t (ΩT ), for i = 1, 2 and any T < ∞;

moreover, the solution (u1, u2, v1, v2) of (1.1) fulfills

lim
t→∞ ‖ui − u∗

i ‖L∞(Ω) + ‖vj − u∗
i ‖L∞(Ω) = 0, i, j = 1, 2, i �= j,

where u∗
i are given by

1.
u∗

1 = 1 and u∗
2 = 0, (1.7)

if relations

a1 < 1, (1.8)

a2 > 1 (1.9)

hold, and
2.

u∗
1 =

1 − a1

1 − a1a2
and u∗

2 =
1 − a2

1 − a1a2
, (1.10)

if (1.8) holds and relation (1.9) is replaced by

a2 < 1. (1.11)

Theorem 1.1 describes the behavior of a competitive system with two biological species with chemotactic
movement. In the first case, the species u1 persists and its density converges to an homogeneous spatial
distribution, while species u2 vanishes as t goes to infinity. In the second case, where a1 < 1 and a2 < 1,
both species persist and the densities stabilize in some constant steady state given by (1.10).

In order to prove the asymptotic behavior of solutions, we introduce an auxiliary system of ODEs.
The proof is based on the comparison principle, in other words, we need a relation of order to bound
the solution of problem (1.1), (u1, u2, v1, v2), between the solutions of an ODE’s system. The moving
rectangles method is adapted to prove the convergence to a constant steady state for some range of
parameters and initial data. The auxiliary system of ODE is presented in Sect. 2, where the qualitative
properties of the system are studied. The comparison between the solutions of the ODEs system and the
solutions of the PDEs is presented in Sect. 3; finally, in the last section the previous results are applied
to prove the existence of global solutions and their asymptotic behavior.

Stability and asymptotic behavior of chemotactic systems with two biological species have been already
studied in Tello and Winkler [25], where the stability of homogeneous steady states is obtained for one
chemical (see also Stinner et al. [23] for the competitive exclusion case and Bai and Winkler [4] and
Blacket al. [3] for the fully parabolic system).
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In Zhang et al. [29], system (1.1) is studied under the assumption μ1μ2 > χ1χ2 for χi ≥ 0, for
a1, a2 ∈ (0, 1). The authors prove the global existence of solutions for any bounded and regular initial
data. If, in addition, χi < aiμi the convergence to the constant steady state

(
1 − a1

1 − a1a2
,

1 − a2

1 − a1a2
,

1 − a2

1 − a1a2
,

1 − a1

1 − a1a2

)

is obtained.
Recently, Zhang [28] has studied the competitive case under assumptions

a1 > 1 > a2 > 0,

for μ1μ2 > χ1χ2 and χ1 ≤ a1μ1, χ2 < μ2. The author proves the global existence of solutions and
the convergence of (u1, u2) to the homogeneous steady state (0, 1). Notice that, assumptions (1.5), (1.6)
consider a different range of parameters than the studied in [29] and [28] where only positive parameters
χi are considered. The problem remains open for large χi which is not considered in [28,29] neither in
this article. In particular if g1 = g2 = 0, blow up occurs for a range of initial data as it is shown in Tao
and Winkler [24].

Recently, Zheng et al. [30] have studied the fully parabolic system for g1 = g2 = 0, i.e., the case, where
there is no competition between the species. The authors obtained the global existence of solutions and
the coexistence of the species for χi ∈ (−1, 1).

The fully parabolic system is also studied in Black [2], where the author considers the following three
situations:

1. weak competition case a2, a1 ∈ (0, 1),
2. partially strong competition case a2 < 1 < a1,
3. fully strong competition case a2, a1 > 1.
The author has obtained the global existence of solutions under assumption

μi >
7
2
χ2

i .

Moreover, coexistence occurs for case 1 for a range of parameters and a constant steady state is asymp-
totically stable. While in case 2, extinction of one species occurs, and the semi-trivial solution is globally
asymptotically stable. In case 3, there exist two solutions which are locally asymptotically stable, the
first one are given by u1 = 0 and v2 = 0 and u2 and v1 given by positive constants. The second solution
is the symmetric case, i.e., u2 = 0 and v1 = 0, for u1 > 0 and v2 > 0.

2. Associated ODE system and qualitative properties

In this section, we study an auxiliary system of ordinary differential equations related to the original
nonlinear system (1.1) to obtain the asymptotic behavior of its solutions.

Developing the second-order terms in (1.1), we get
⎧
⎪⎨

⎪⎩

∂u1

∂t
= d1Δu1 − χ1∇u1 · ∇v1 + χ1u1 (β1u2 − α1v1) + g1,

∂u2

∂t
= d2Δu2 − χ2∇u2 · ∇v2 + χ2u2 (β2u1 − α2v2) + g2.

(2.1)

Let us consider (u1, u1, u2, u2) = (u1(t), u1(t), u2(t), u2(t)) the solution of the initial value problem
⎧
⎪⎪⎨

⎪⎪⎩

u′
1 = |χ1|β1u1(u2 − u2) + μ1u1(1 − u1 − a1u2),

u′
1 = |χ1|β1u1(u2 − u2) + μ1u1(1 − u1 − a1u2),

u′
2 = |χ2|β2u2(u1 − u1) + μ2u2(1 − a2u1 − u2),

u′
2 = |χ2|β2u2(u1 − u1) + μ2u2(1 − a2u1 − u2),

(2.2)
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for t ∈ (0,∞), with initial data

u1(0) = u0
1, u1(0) = u0

1, u2(0) = u0
2, u2(0) = u0

2, (2.3)

satisfying
0 < u0

1 < u0
1 and 0 < u0

2 < u0
2. (2.4)

Notice that, standard ODE theory gives the local existence of solutions of systems (2.2)–(2.3).
Throughout this section, we prove that the two pairs of solutions of the ODE’s system (2.2), i.e.,

(u1, u1) and (u2, u2) have the same constant limit u∗
1 and u∗

2, respectively, and, hence, also any function
between them. Recall that we are working under hypothesis (1.5)–(1.6), i.e.,

2|χ1|β1 + μ1a1 < μ2 and 2|χ2|β2 + μ2a2 < μ1.

The stationary states of (2.2) satisfying u1 = u1, u2 = u2, are the trivial steady state

(0, 0, 0, 0),

the semi-trivial steady states
(0, 0, 1, 1) (2.5)

and
(1, 1, 0, 0) (2.6)

and a fourth steady state given by
(

1 − a1

1 − a1a2
,

1 − a1

1 − a1a2
,

1 − a2

1 − a1a2
,

1 − a2

1 − a1a2

)

. (2.7)

Now, we study the properties of the solutions of the above system, i.e., we find a relationship between
solutions (u1, u1, u2, u2) when the initial data (u0

1, u
0
1, u

0
2, u

0
2) satisfies (2.4), i.e., the initial ordering is

inherited by the solution. Furthermore, we prove that (u1, u1, u2, u2) are actually global in time and
bounded. The constant steady states can be both positive or one positive and one negative.

2.1. Case a1 < 1 and a2 > 1

In this section, we focus on the case of competitive exclusion of species, i.e.,

a1 < 1 a2 > 1.

Notice that under assumptions (1.8)–(1.9), the fourth steady state has two positive coordinates and
two negative, since the solution remains nonnegative, provided the boundedness an convergence of the
solutions, at least two solutions tend to zero despite of the initial data.

We denote the u∗
1 and u∗

2 the semi-trivial steady state given by (1.7), i.e.,

u∗
1 = 1, u∗

2 = 0.

We proceed to prove the asymptotic behavior of the solutions; the result is enclosed in the following
theorem.

Theorem 2.1. Let (u1, u1, u2, u2) be the solutions of system (2.2) and (u∗
1, u

∗
2) given by (1.7). Under

assumptions (1.5)–(1.6) and (1.8)–(1.9) the below limits hold

u1(t) → u∗
1 u1(t) → u∗

1 t → ∞
u2(t) → u∗

2 u2(t) → u∗
2 t → ∞.

In order to demonstrate Theorem 2.1, we prove that (u1, u1, u2, u2) are actually global in time and
bounded.
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Lemma 2.1. The solution of system (2.2), with initial data (2.3) verifying (2.4), satisfies

0 < u1 < u1 (2.8)
0 < u2 < u2 (2.9)

for t ∈ (0,∞).

Proof. We first see that ui > 0, for i = 1, 2. We can write the corresponding equations of ui from system
(2.2) as u′

i = uifi(u1, u1, u2, u2), fi being smooth functions. One check easily that ui = 0 is a solution
of the previous equation. By existence and uniqueness of the solution and taking into account that the
initial data are positive u0

i > 0 it follows that ui(t) > 0 for all t > 0.
We prove ui < ui arguing by contradiction. Suppose (2.8) and (2.9) are false, i.e., there exists t0 in

(0, Tmax) such that u1(t) < u1(t) and u2(t) < u2(t) for all t ∈ (0, t0) and one of the following cases occurs

u1(t0) = u1(t0) u2(t0) < u2(t0), (2.10)

u1(t0) < u1(t0) u2(t0) = u2(t0), (2.11)

u1(t0) = u1(t0) u2(t0) = u2(t0). (2.12)

If case (2.10) occurs, we divide the first and second equations in (2.2) by u1 and u1, respectively, and
subtracting them we get

u′
1

u1
− u′

1

u1

= (2|χ1|β1 + μ1a1)(u2 − u2) − μ1(u1 − u1).

By continuity of the functions involved in the previous equation and by (2.10), we can find ε such that
u1 − u1 < ε and (2|χ1|β1 + μ1a1)(u2 − u2) > μ1ε, for a certain δ small enough, so, these inequalities hold
in the interval (t0 − δ, t0). Then, in (t0 − δ, t0) we have

u′
1

u1
− u′

1

u1

> 0

and integrating over (t0 − δ, t0) we obtain

ln u1(t0) − ln u1(t0) > 0,

which contradicts (2.10). Case (2.11) is similar to the previous case; therefore, we omit the details.
To prove case (2.12), we introduce the functions f and g defined by

f = u1 − u1,

g = u2 − u2.

We have the following differential equation for f

f ′ = |χ1|β1(u2 − u2)(u1 + u1) + μ1(u1 − u1) − μ1(u2
1 − u2

1) − μ1a1(u1u2 − u1u2),

which can be rewritten as

f ′ = h1 (u1, u1, u2, u2) f + h2 (u1, u1, u2, u2) g.

for

h1 (u1, u1, u2, u2) := μ1 − μ1(u1 + u1) − 1
2
μ1a1(u2 + u2)

and

h2 (u1, u1, u2, u2) := |χ1|β1(u1 + u1) +
1
2
μ1a1(u1 + u1).

Proceeding the same way on g, we get

g′ = h3 (u1, u1, u2, u2) f + h4 (u1, u1, u2, u2) g,
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for

h3 (u1, u1, u2, u2) := |χ2|β2(u2 + u2) +
1
2
μ2a2(u2 + u2),

and

h4 (u1, u1, u2, u2) := μ2 − μ2(u2 + u2) − 1
2
μ2a2(u1 + u1).

We turn our attention to the system
⎧
⎨

⎩

f ′ = h1 · f + h2 · g,
g′ = h3 · f + h4 · g,
f(t0) = 0 g(t0) = 0,

where it can be easily checked that (f, g) = (0, 0) is a solution of the system and by uniqueness of solution
together with the initial data, we conclude that f = 0, g = 0 in the interval [0, t0), which contradicts the
definition of t0 and ends the proof. �

Lemma 2.2. Let (1.5), (1.6) hold. Then, the solution of the system (2.2) satisfies

u1(t) ≤ 1, u2(t) ≤ 1 for t ∈ (0,∞), (2.13)

provided

u1(0) ≤ 1, u2(0) ≤ 1.

Proof. Dividing the second equation in (2.2) by u1, we see that

u′
1

u1

≤ μ1 − μ1u1. (2.14)

So u1(t) is a subsolution of the ODE y′
1 = μ1(y1 − y2) which can be solved easily and the solution is

y1 :=
1

c1e−μ1t + 1
(2.15)

for c1 := u−1
1 (0) − 1. Thus u1 satisfies

u1 ≤ 1
ce−μ1t + 1

≤ 1 := u∗
1. (2.16)

In the same way, we prove

u2(t) ≤ y2(t) ≤ 1,

and the proof ends. �

Lemma 2.3. Under assumptions (1.5)–(1.6) there exists a positive constant C > 0 such that the solution
(u1, u2) of (2.2) satisfies

u1u2 ≤ C for t ∈ (0,∞).

Proof. Let φ(t) be the function defined as φ(t) = lnu1(t) + ln u2(t). Dividing the first equation in (2.2)
by u1 and the third one by u2, after adding up, we have

φ′ =
u′

1

u1
+

u′
2

u2
≤ μ1 + μ2 + (|χ2|β2 − μ1)u1 + (|χ1|β1 − μ2)u2.

Denoting c1 = μ1 + μ2 > 0, c2 = min {μ1 − |χ2|β2, μ2 − |χ1|β1} > 0, in the above inequality, we claim

φ′(t) ≤ c1 − c2(u1 + u2). (2.17)
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By mean of the inequality u1 + u2 ≥ 2
√

u1u2 = 2e
1
2φ, we get that φ verifies the inequality

φ′(t) ≤ c1 − c22e
1
2φ. (2.18)

Thus, φ is a sub-solution of the equation

z′ = c1 − c22e
1
2 z, (2.19)

with initial z(0) := lnu0
1 + ln u0

2. This equation has as stationary state 2 ln c1
2c2

, so z ≤ max
{

z0, 2 ln c1
2c2

}
.

Because of φ(t) ≤ z(t) for all t > 0, we found an upper bound for lnu1 +ln u2 and we conclude that there
exists a positive constant C > 0 such that u1u2 ≤ C. �

Lemma 2.4. Under hypothesis (1.5)–(1.6), there exists a positive constant K > 0, such that the solution
(u1, u2) of (2.2) satisfies for t ∈ (0,∞)

u1 ≤ K, u2 ≤ K.

Proof. Taking the first equation of system (2.2) and by Lemma 2.3

u′
1 = u1[|χ1|β1(u2 − u2) + μ1 − μ1u1 − μ1a1u2]

= |χ1|β1u1u2 − |χ1|β1u1u2 + μ1u1 − μ1u
2
1 − μ1a1u1u2

≤ |χ1|β1u1u2 + μ1u1 − μ1u
2
1

≤ |χ1|β1C + μ1u1 − μ1u
2
1.

By comparison, the previous inequality proves

u1 ≤ max

{

u0,
μ1 +

√
μ2

1 + 4|χ1|β1Cμ1

2μ1

}

.

In an analogous way, we find a positive constant K2 such that u2 ≤ K2. Taking now K = max{K1,K2}
the proof of Lemma 2.4 is complete. �

The following lemma will be used to prove that the super- and sub- solutions u2 and u2 are comparable
in both directions:

Lemma 2.5. Let (1.5)–(1.6) hold. Then, there exists a positive constant M > 0 such that

u2 ≤ Mu2.

Proof. From equations (2.2):

u′
1

u1
− u′

1

u1

+
u′

2

u2
− u′

2

u2

=
d
dt

(

ln
u1

u1

+ ln
u2

u2

)

= A1(u1 − u1) + A2(u2 − u2),

where we denote by A1 := 2|χ2|β2 + μ2a2 − μ1 and A2 := 2|χ1|β1 + μ1a1 − μ2. By hypothesis (1.5), Ai

are negative for i = 1, 2, i.e., A1 < 0, and A2 < 0. Taking ε = min{−A1,−A2}, we have

d
dt

(

ln
u1

u1

+ ln
u2

u2

)

≤ −ε[(u1 − u1) + (u2 − u2)] ≤ 0. (2.20)

Integrating this expression:
(

ln
u1

u1

+ ln
u2

u2

)

≤ c0,
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for some positive constant c0 > 0. Then, by the positivity of ln(u1/u1), because u1 > u1, it follows

ln
u2

u2

≤ c0 ⇒ u2 ≤ Mu2,

with M = ec0 . �

Lemma 2.6. Under assumptions (1.5) and (1.6), we have

ui(t) − ui(t) → 0 as t → ∞, and

∞∫

0

(ui(t) − ui(t))dt < C.

Proof. We define the function

k(t) := u1 − u1.

Notice that, by Lemma 2.1 we have that k > 0 for any t > 0. Thanks to Lemma 2.4, we have that

|k′| = |u′
1 − u′

1| ≤ k1 < ∞ (2.21)

where k1 is independent of t.
Integrating in (2.20) over (0, T ), we get

ln
u1(T )
u1(T )

+ ln
u2(T )
u2(T )

+ ε

T∫

0

(u1 − u1)dt + ε

T∫

0

(u2 − u2)dt ≤ ln
u1(0)
u1(0)

+ ln
u2(0)
u2(0)

and therefore, by Lemma 2.1 we have

T∫

0

(u1 − u1)dt ≤ 1
ε

ln
u1(0)
u1(0)

+
1
ε

ln
u2(0)
u2(0)

.

We take limits when T → ∞ to obtain
∞∫

0

k(t)dt =

∞∫

0

(u1 − u1)dt ≤ k2 < ∞. (2.22)

Relations (2.21)–(2.22) and Lemma 5.1 in Friedman–Tello [5] end the proof for i = 1.
The case i = 2 is proven in the same fashion. �

Lemma 2.7. Let us consider that (1.5) and (1.6) are verified. For every positive coefficients a1, a2 verifying
(1.8) and (1.9), the following statement holds

ln u2 + μ2(a2 − 1)

t∫

0

u1 + μ2(1 − a1)

t∫

0

u2 ≤ C, (2.23)

where C is independent of t.

Proof. Dividing the first and last equations in (2.2) by u1 and u2, respectively, multiplying the obtained
equations by μ2 and μ1, respectively, and resting them, we see that

μ2
d
dt

ln u1 − μ1
d
dt

ln u2 = A1(u1 − u1) + A2(u2 − u2)

+μ1μ2 [(a2 − 1)u1 + (1 − a1)u2] ,
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where A1 = μ1|χ2|β2 > 0 and A2 = μ2|χ1|β1 > 0; after integration, and thanks to Lemma 2.6 we have

μ1 ln u2 + μ1μ2(a2 − 1)

t∫

0

u1 + μ1μ2(1 − a1)

t∫

0

u2 ≤ K + μ2 ln u1. (2.24)

Since ln u1 < C, by Lemma 2.4 we conclude the result. �

Lemma 2.8. We have

max{μ1, μ2}
t∫

0

(u1 + u2) ≥ μ1t + C1, (2.25)

where C1 is a constant independent of t.

Proof. From equation (2.2), we have

d
dt

ln u1 = |χ1|β1(u2 − u2) + μ1 − μ1u1 − μ1a1u2. (2.26)

After integration in (2.26) and thanks to Lemmas 2.4 and 2.2, we conclude

max{μ1, μ2}
t∫

0

(u1 + u2) ≥ μ1t + C1.

�

Lemma 2.9. Let (1.5) and (1.6) hold. For every positive coefficients a1, a2 verifying relations (1.8) and
(1.9), we have

u2 ≤ c1e
−c2t,

which implies
u2 → 0, as t → ∞. (2.27)

Proof. The proof is a combination of previous lemmas, i.e., by relations (2.23) and (2.25) we get

K1t + K2 ≤
t∫

0

u1 +

t∫

0

u2 ≤ K3 − K4 ln u2 (2.28)

with Ki independent of t, K1 and K4 positive. Thus, u2 satisfies

ln u2 ≤ k1 − k2t

which implies

u2 ≤ c1e
−c2t.

Taking limits when t → ∞, the proof ends. �

Lemma 2.10. The following statement is true for u1 and u2 solutions of (2.2) if (1.5) and (1.6) hold

lim inf
t→∞ u1(t) ≥ u∗

1.
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Proof. Thanks to the previous Lemma, we have that for any ε > 0 there exists Tε < ∞ such that
u2(t) ≤ ε, ∀t > Tε and we have in the first equation in (2.2), the first term on the right side is positive
due to u2 > u2, that is

u′
1 ≥ −μ1u

2
1 + μ1u1 − μ1a1εu1.

Thus, u1 is a super solution of the ordinary differential equation

y′ = −μ1y
2 + μ1(1 − a1ε)y,

whose solution is

yε(t) =
1

1
1−a1ε + kεe−μ1(1−a1ε)t

, for kε =
1

u1(Tε)
− 1

1 − a1ε
(2.29)

such that

yε(t) ≤ u1(t) for t ∈ (Tε,∞).

Back to the solution u1, we conclude

lim inf
t→∞ u1 ≥ lim

t→∞ yε = 1 − a1ε

We take limits when ε → 0 to end the proof. �

End of the proof of Theorem 2.1. Thanks to Lemmas 2.1 and 2.5, we conclude

lim
t→∞ u2 = lim

t→∞ u2 = 0.

As a consequence of Lemmas 2.2 and 2.10, we have

lim inf
t→∞ u1 ≤ u∗

1 ≤ lim sup
t→∞

u1.

Moreover, by Lemma 2.6, we conclude the proof of Theorem 2.1. �

2.2. Case a1 < 1 and a2 < 1

In this section, we consider the following assumption

a2 < 1,

instead of (1.9). We prove that there exists a unique globally stable steady with positive coordinates
which corresponds to the coexistence of the species. The following theorem gives a precise description of
the asymptotic behavior of the solutions of system (2.2).

Theorem 2.2. Let (u1, u1, u2, u2) be the solutions of system (2.2) and (u∗
1, u

∗
2) given by (2.7), i.e.,

u∗
1 =

1 − a1

1 − a1a2
and u∗

2 =
1 − a2

1 − a2a1
.

Under assumptions (1.5)–(1.6), (1.8) and (1.11) the below limits hold

u1(t) → u∗
1, u1(t) → u∗

1, u2(t) → u∗
2, u2(t) → u∗

2 as t → ∞.

The importance of this result lies in obtaining (ui − ui) → 0 when t → ∞, i = 1, 2, which implies
that any other function bounded between them will inherit their asymptotic behavior. To demonstrate
the theorem, we consider the following steps.
Step 1.

0 < u1 < u1, 0 < u2 < u2.



107 Page 12 of 20 Cruz, Negreanu and Tello ZAMP

Step 2.

u1 ≤ u∗
1 = u∗

1 ≤ u1, u2 ≤ u∗
2 = u∗

2 ≤ u2,

for all t ∈ (0,∞).
Step 3. There exists a positive constant C such that the super-solutions u1 and u2 of (2.2) satisfy

u1u2 ≤ C for t ∈ (0,∞).

Step 4. There exist positive constants Ki > 0, i = 1, 2 such that the super-solutions u1 and u2 of (2.2)
satisfy, for t ∈ (0,∞),

u1 ≤ K1 and u2 ≤ K2.

Step 5. (ui − ui) → 0 when t → ∞, i = 1, 2,
The proofs of Step 1, Step 3, Step 4 and Step 5 are obtained in the same way as the previous case, so
we omit the details. To obtain Step 5, we proceed as in Lemma 1.4 in Tello and Winkler [25]. Finally,
Theorem 2.2 is a direct consequence of these properties of the solutions. �

3. Comparison principle and asymptotic behavior of solutions

The aim of this section is to relate the solutions of the system of PDE’s (1.1)–(1.3) with the solutions of
the ODE’s system (2.2) that we have studied in the previous section. Under some order relation between
initial conditions of both PDE’s and ODE’s systems, we prove that such order is preserved. Recall that
the functions (u1, u1, u2, u2) converge to (u∗

1, u
∗
1, u

∗
2, u

∗
2) as t → ∞, where (u∗

1, u
∗
1, u

∗
2, u

∗
2) are the constant

steady states defined in (2.5) and (2.7), respectively, under different restrictions on the coefficients a1

and a2. We bound the solution of (1.1) between u1,2 (lower bound) and u1,2 (upper bound) to obtain the
same qualitative behavior than u1,2 and u1,2. The proof follows the rectangle method used in Pao [21] for
reaction diffusion systems, see also Negreanu and Tello [18,19] and [20] where the method is applied to
parabolic–elliptic systems with chemotactic terms.

Thanks to assumption (1.4), we have positive numbers (u0
1, u

0
1, u

0
2, u

0
2) such that

0 < u0
1 ≤ u0

1(x) ≤ u0
1, (3.1)

0 < u0
2 ≤ u0

2(x) ≤ u0
2 (3.2)

for all x ∈ Ω.
In order to prove our main theorem we define the functions

U i(x, t) := ui(t, x) − ui(t) U i(x, t) := ui(t, x) − ui(t), (3.3)

V i(x, t) := vi(t, x) − uj(t) V i(x, t) := vi(t, x) − uj(t), (3.4)

for i, j = 1, 2, i �= j where (u1, u2, v1, v2) and (u1, u1, u2, u2) are the solutions of (1.1)–(1.3) and (2.2),
respectively, and we use from now on the usual notation for the positive and negative part of a function
f given by

(f)+ =

{
f if f ≥ 0,

0 in other case,
(f)− = (−f)+.

We aim to prove that the positive and negative parts (U i)+,(U i)− are identically zero, and therefore,
the solutions inherit the order ui < ui < ui.

Theorem 3.1. Let (u0
1, u

0
2) ∈ (L∞(Ω))2. The solution of (1.1)–(1.3) with initial data verifying (3.1)–(3.2)

is bounded and satisfies

u1(t) ≤ u1(t, x) ≤ u1(t), u1(t) ≤ v2(t, x) ≤ u1(t), (x, t) ∈ Ω × (0,∞),

u2(t) ≤ u2(t, x) ≤ u2(t), u2(t) ≤ v1(t, x) ≤ u2(t), (x, t) ∈ Ω × (0,∞)
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where (ui, ui) is the solution of the ODE system (2.2).

To prove Theorem 3.1, we recall the following result, since the proof is similar to Lemma 3.2 in [17],
we omit the details.

Lemma 3.1. Let Ω ∈ R
n be a bounded and open domain in R

n, p ∈ N, p ∈ (max[n
2 , 1],∞) and vi be the

solution of
⎧
⎨

⎩

− Δvi + αivi = βiuj , x ∈ Ω,

∂vi

∂n
= 0, x ∈ ∂Ω,

for ui ∈ Lp(Ω), i, j = 1, 2 and i �= j. Then, for any q ≤ ∞, the following inequalities hold:

‖(V i)+‖Lq(Ω) ≤ C(Ω, p, q)‖(U j

)

+
‖Lp(Ω).

and
‖(V i)−‖Lq(Ω) ≤ C(Ω, p, q)‖(U j

)

−‖Lp(Ω),

for i, j = 1, 2, i �= j and V i, U i defined in (3.3).

First, we consider Tmax defined as the first t > 0 such that

lim sup
t→Tmax

(‖ui‖L∞(Ω) + ‖vi‖L∞(Ω) + t
)

= ∞.

Then, for any T < Tmax we have that the functions (u1, u2, v1, v2) are continuous and differentiable in
Ω × (0, T ) we can find c1(T ) ≥ 0 such that

u1(x, t) ≤ c1(T ), u2(x, t) ≤ c1(T ), (3.5)

v1(x, t) ≤ c1(T ), v2(x, t) ≤ c1(T ).

Lemma 3.2. Let (u2, u2) be the solution of the ODE system (2.2). The solutions of (1.1) satisfy:
∫

Ω

(α1v1 − β1u2)2+ ≤
∫

Ω

(U2)2+, (3.6)

∫

Ω

(α1v1 − β1u2)
2
+ ≤

∫

Ω

(U2)
2
−. (3.7)

Proof. Taking the third equation of (1.1) and subtracting on both sides u2, we obtain

−Δv1 + α1v1 − β1u2 = β1U2.

If we multiply now by (α1v1 − β1u2)+ and integrate over Ω, thanks to Young inequality we get
1
α1

∫

Ω

|∇(α1v1 − β1u2)+|2 +
1
2

∫

Ω

(α1v1 − β1u2)2+ ≤ 1
2

∫

Ω

(U2)2+,

which proves (3.6). Since the proof of (3.7) is analogous, we omit the details. �

Proof of Theorem 3.1. We consider 0 < T < ∞. First we deduce the equation that satisfies U1 subtracting
the first equations in (1.1) and (2.2), respectively,

∂U1

∂t
− d1ΔU1 + χ1∇U1∇v1

≤ β1 (χ1u1u2 − |χ1|u1u2 + |χ1|u1u2)

−μ1a1(u1u2 − u1u2) − χ1α1u1v1 + g(u1) − g(u1),

(3.8)
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where g(u1) := μ1u1(1 − u1). We have

u1u2 − u1u2 = (u1 − u1)u2 + (u2 − u2)u1 = U1u2 + U2u1.

Rewriting some of the above terms in order to simplify, considering two cases, χ1 positive and negative,
we get:

• Case χ1 > 0. In (3.8), |χ1| = χ1 and

β1 (χ1u1u2 − |χ1|u1u2 + |χ1|u1u2) − χ1α1u1v1

= χ1β1 (u1u2 − u1u2 + u1u2) − χ1α1u1v1

= χ1β1 (u1u2 − u1u2 + u1u2 − u1u2 + u1u2) − χ1α1u1v1

= χ1β1 [(u1 − u1)u2 + (u2 − u2)u1 + u1u2] − χ1α1u1v1

= χ1β1U1u2 + χ1β1U2u1 + χ1β1u1u2 − χ1α1

(
U1v1 + u1v1

)
.

(3.9)

Thus, the equation that U1 verifies

∂U1

∂t
= d1ΔU1 − χ1∇U1∇v1 + U1[(χ1β1 − μ1a1)u2 − χ1α1v1]

+χ1β1U2u1 − μ1a1U2u1 + χ1u1(β1u2 − α1v1) + g(u1) − g(u1).

We multiply now the previous equation by the test function (U1)+, observing that

U1(U1)+ = (U1)2+,
∂

∂t
U1(U1)+ =

1
2

∂

∂t
(U1)2+,

∫

Ω

ΔU1(U1)+ = −
∫

Ω

|∇(U1)+|2.

We apply the mean value theorem to g for some

ξ1(x, t) ∈ (u1(x, t), u1(t)) ∪ (u1(t), u1(x, t)),

i.e., g(u1) − g(u1) = g′(ξ1)U1, integrating by parts over Ω, the equation for U1 becomes

1
2

∂

∂t

∫

Ω

(U1)2+ + d1

∫

Ω

|∇(U1)+|2

= −χ1

∫

Ω

(U1)+∇U1∇v1

︸ ︷︷ ︸
(1)

+
∫

Ω

(U1)2+g′(ξ1)

+
∫

Ω

(U1)2+(χ1β1 − μ1a1)u2 − χ1α1v1)

︸ ︷︷ ︸
(2)

+χ1β1

∫

Ω

(U1)+U2u1

︸ ︷︷ ︸
(3)

−μ1a1

∫

Ω

(U1)+U2u1

︸ ︷︷ ︸
(4)

+
∫

Ω

(U1)+u1(χ1β1u2 − χ1α1v1)

︸ ︷︷ ︸
(5)

.

(3.10)

1. Using integration by parts and the third equation in (1.1), the first term in (3.10) remains

−χ1

∫

Ω

(U1)+∇U1∇v1 =
χ1

2

∫

Ω

(U1)2+(α1v1 − β1u2).
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By relation (3.5) it follows that |β1u2 − α1v1| ≤ (β1 + α1)c1(T ) in Ω × (0, T ) and therefore we
can bound the first one

−χ1

∫

Ω

(U1)+∇U1∇v1 ≤ (β1 + α1)χ1c1(T )
2

∫

Ω

(U1)2+.

2. For the second integral in (3.10), by (3.5), we have

|(χ1β1 − μ1a1)u1 − χ1α1v1| ≤ (χ1(β1 + α1) + μ1a1)c1(T )

and we obtain
∫

Ω

(U1)2+((χ1β1 − μ1a1)u2 − χ1α1v1) ≤ c1(T )
∫

Ω

(U1)2+.

3. For the third integral in (3.10), we use Lemma 2.4 together with Young inequality and we have

χ1β1

∫

Ω

(U1)+U2u1 ≤ χ1β1

∫

Ω

(U1)+(U2)+u1

≤ Cχ1β1

∫

Ω

(U1)+(U2)+ ≤ 1
2
Cχ1β1

⎡

⎣

∫

Ω

(U1)2+ +
∫

Ω

(U2)2+

⎤

⎦ .

4. We repeat the same strategy for the fourth term in (3.10), i.e., applying Lemma 2.4 together
with Young inequality, for all t ∈ (0, T ) it results

−μ1a1

∫

Ω

(U1)+U2u1 ≤ μ1a1

∫

Ω

(U1)+(U2)−u1

≤ μ1a1C

∫

Ω

(U1)+(U2)−

≤ 1
2
μ1a1C

⎡

⎣

∫

Ω

(U1)2+ +
∫

Ω

(U2)
2
−

⎤

⎦ .

5. For the fifth and last integral in (3.10), we use (3.5) and the bounds obtained in Lemma 3.2,
so we find

∫

Ω

(U1)+u1(χ1β1u2 − χ1α1v1)

≤ −Cχ1

∫

Ω

(U1)+(α1v1 − β1u2)

≤ Cχ1

∫

Ω

(U1)+(α1v1 − β1u2)−

≤ 1
2
Cχ1

⎡

⎣

∫

Ω

(U1)2+ +
∫

Ω

(χ1β1u2 − χ1α1v1)2+

⎤

⎦

≤ 1
2
Cχ1

⎡

⎣

∫

Ω

(U1)2+ +
∫

Ω

(U2)
2
+

⎤

⎦ , t ∈ (0, T ).



107 Page 16 of 20 Cruz, Negreanu and Tello ZAMP

• Case χ1 < 0. Subtracting the first equations in (1.1) and (2.2), respectively, we get

∂U1

∂t
= d1ΔU1 − χ1∇U1∇v1 + χ1β1(u1u2 + u1u2 − u1u2)

−μ1a1(u1u2 − u1u2) − χ1α1u1v1 + g(u1) − g(u1),
(3.11)

where g(u1) : μ1 = u1(1 − u1). All terms in (3.11) are treated in the same way as in the previous
section, i.e., (3.8), except the term corresponding to (3.9), which now is as follows:

χ1β1 (u1u2 + u1u2 − u1u2) − χ1α1u1v1

since

χ1β1u1u2 − χ1β1u1u2 = χ1β1[(u1 − u1)u2 + u1(u2 − u2)]

and

χ1β1u1u2 − χ1α1u1v1 = −χ1α1

[

(u1 − u1)v1 + u1

(

v1 − β1

α1
u2

)]

.

Therefore,

χ1β1 (u1u2 + u1u2 − u1u2) − χ1α1u1v1

= χ1β1[(u1 − u1)u2 + u1(u2 − u2)]

−χ1α1

[

(u1 − u1)v1 + u1

(

v1 − β1

α1
u2

)]

.

Multiplying by (U1)+ and integrating over Ω it results
∫

Ω

[

χ1β1[U1u2 + u1U2)] − χ1α1

[

U1v1 + u1

(

v1 − β1

α1
u2

)]]

(U1)+

≤
∫

Ω

C[(U1)2+ + (U2)−(U1)+] − C[(U1)2+ + u1

(

v1 − β1

α1
u2

)

+

(U1)+]

≤ C

⎡

⎣

∫

Ω

U1)2+ +
∫

Ω

(U2)
2
− +

∫

Ω

(

v1 − β1

α1
u2

)2

+

⎤

⎦

≤ C

⎡

⎣

∫

Ω

U1)2+ +
∫

Ω

(U2)
2
−

⎤

⎦ ,

in view of Lemma 3.2. As in the case χ1 > 0, we obtain similar upper bounds for the enumerate
integrals for the commune terms (independent terms of χi) in (3.8) and (3.11). After routinary
computations, we get the same result if χi is negative.

With all the previous calculus, we reach

1
2

d
dt

∫

Ω

(U1)2+ ≤ k1(T )

⎛

⎝

∫

Ω

(U1)2+ +
∫

Ω

(U2)2+ +
∫

Ω

(U2)
2
−

⎞

⎠
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for all t ∈ (0, T ), with k1(T ) being a positive constant. In the same way, we obtain

1
2

d
dt

∫

Ω

(U1)
2
− ≤ k2(T )

⎛

⎝

∫

Ω

(U1)
2
− +

∫

Ω

(U2)2+ +
∫

Ω

(U2)
2
−

⎞

⎠ ,

1
2

d
dt

∫

Ω

(U2)2+ ≤ k3(T )

⎛

⎝

∫

Ω

(U2)2+ +
∫

Ω

(U1)2+ +
∫

Ω

(U1)
2
−

⎞

⎠ ,

1
2

d
dt

∫

Ω

(U2)
2
−k4(T )

⎛

⎝

∫

Ω

(U2)
2
− +

∫

Ω

(U1)2+ +
∫

Ω

(U1)
2
−

⎞

⎠ .

We add the previous inequalities to get

d
dt

⎛

⎝

∫

Ω

(U1)2+ + (U1)
2
− + (U2)2+ + (U2)

2
−

⎞

⎠

≤ k(T )

⎛

⎝

∫

Ω

(U1)2+ + (U1)
2
− + (U2)2+ + (U2)

2
−

⎞

⎠ ,

with k(T ) = max{ki(T ) : i = 1...4}. Applying Gronwall’s lemma and recalling hypothesis (3.1)–(3.2), we
have (U

0

i )+ = (U0
i )− = 0, i = 1, 2 and conclude

∫

Ω

(
(U1)2+ + (U1)

2
− + (U2)2+ + (U2)

2
−

)
= 0, ∀t ∈ (0, T ),

so, U i,+ = U i,− = 0, for i = 1, 2. Hence we have

u1(t) ≤ u1(t, x) ≤ u1(t), u2(t) ≤ u2(t, x) ≤ u2(t), (x, t) ∈ Ω × (0, T ).

By Lemma 3.1, we also obtain V i,+ = V i,− = 0, for i = 1, 2 and therefore

u1(t) ≤ v2(t, x) ≤ u1(t), u2(t) ≤ v1(t, x) ≤ u2(t), (x, t) ∈ Ω × (0, T ).

As T < Tmax is arbitrary, we take limits as T → Tmax and conclude that Tmax = ∞ and the proof of the
Theorem 3.1 ends. �

4. Existence of the solution and asymptotic behavior

We first consider the local existence of solutions. The result is enclosed in the following lemma.

Lemma 4.1. Under assumptions (1.5)–(1.6), there exists a unique solution (u1, u2, v1, v2) to (1.1)–(1.3)
in (0, Tmax) satisfying

ui, vi ∈ C
2+α,1+ α

2
x,t (ΩT ), for i = 1, 2 and any T < Tmax

where Tmax is a positive number satisfying

lim sup
t→Tmax

(‖ui(t)‖L∞(Ω) + ‖vj(t)‖L∞(Ω) + t
)

= ∞, i, j = 1, 2.

Moreover, for i = 1, 2,

ui(t, x) ≥ 0, vi(x, t) ≥ 0, x ∈ Ω, t < Tmax.
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Proof. The proof follows standard fixed point theory, see for instance Horstmann [8], Horstmann and
Winkler [9], or Negreanu and Tello [20]. To obtain the regularity, we consider any T < Tmax, then ui

satisfies

uit − Δui + bi(t, x) · ∇ui + uici(x, t) = 0, (t, x) ∈ ΩT ,

where

bi(x, t) = χi∇vi, ci(x, t) = χi(βiuj − αivi), ΩT = (0, T ) × Ω

for i, j = 1, 2 and i �= j. Since ui ∈ L∞(ΩT ) we have that vi ∈ Ls(0, T : W 2,q(Ω)) ∩ L∞(ΩT ) for any
s, q < ∞ and therefore

bi(x, t) ∈ Ls(0, T : W 1,q(Ω)), ci(x, t) ∈ L∞(ΩT ).

Then, thanks to Remark 48.3 (ii) in Quittner–Souplet [22] and following the notation there we have
ui ∈ W 2,1,q(ΩT ) for any q < ∞ which implies that that ui ∈ C1+α,β

x,t (ΩT ) for any α, β ∈ (0, 1). Therefore
we have that

uit − Δui ∈ Cα,β
x,t (ΩT ) for any α, β ∈ (0, 1)

and we deduce the wished result (see for instance Remark 48.3 (ii) in [22]).
Uniqueness of solutions is obtained by contradiction, following standard arguments. The nonnegativity

of ui is a consequence of the maximum principle. �

Lemma 4.2. Let vi be the unique solution of
⎧
⎨

⎩

−Δvi + αivi = βiuj

∂vi

∂�n
|∂Ω = 0

for i = 1, 2, j = 1, 2, i �= j. Then, it results
vi ≥ 0 (4.1)

and

‖vi‖L∞(Ω) ≤ βi

αi
‖uj‖L∞(Ω). (4.2)

Proof. The proof of (4.1) is a consequence of Lemma 4.1 and Maximum Principle. To obtain (4.2), we
apply again Maximum Principle. �

End of the proof of Theorem 1.1. The global existence of solutions is given by Lemma 4.1, Theorem 3.1
and Lemmas 2.1 and 2.4.

The proof of the asymptotic behavior of the solutions is a consequence of Theorem 3.1, Lemma 4.1
and Theorem 2.1 or Theorem 2.2 for case a2 > 1 and case a2 < 1, respectively. �
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