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a b s t r a c t

We consider a nonlinear PDEs system of Parabolic–Elliptic type with chemotactic
terms. The system models the movement of a population “n” towards a higher
concentration of a chemical “c” in a bounded domain Ω .

We consider constant chemotactic sensitivity χ and an elliptic equation to
describe the distribution of the chemical

nt − dn∆n = −χdiv(n∇c) + µn(1− n),
−dc∆c+ c = h(n)

for a monotone increasing and Lipschitz function h.
We study the asymptotic behavior of solutions under the assumption of 2χ|h′| <

µ. As a result of the asymptotic stability we obtain the uniqueness of the strictly
positive steady states.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models of chemotaxis were introduced by Keller and Segel [1] in order to model the
movement and aggregation of amoebae responding to a chemical stimulus. In the last four decades,
chemotactic terms have been used to model different types of biological phenomena, as angiogenesis,
morphogenesis, immune system response, etc. The specific model we are studying features a coupled system
of two PDEs: a parabolic equation with a logistic growth term modeling the density of a population n,

nt − dn∆n = −χdiv(n∇c) + µn(1− n) in x ∈ Ω , t ∈ (0, T ), (1.1)
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where dn, χ and µ are positive constants and Ω ⊂ RN is a bounded domain with regular boundary ∂Ω . An
elliptic equation describes the concentration of a chemical substance c, which acts as the chemoattractant:

−dc∆c = h(n)− c in x ∈ Ω , (1.2)

with initial datum and boundary conditions
∂n

∂n = 0 on x ∈ ∂Ω , t ∈ (0, T ), (1.3)

n(0) = n0 on x ∈ Ω , (1.4)
∂c

∂n = 0 on x ∈ ∂Ω . (1.5)

Solutions to (1.1)–(1.5) which are biologically meaningful must satisfy

n ≥ 0, c ≥ 0. (1.6)

The function h represents the production of the chemical substance by the living organisms, which,
depending on the process, can take different forms. In the literature the function h has different
representations:

• h(n) = n, see Jäger and Luckhaus [2] and Tello and Winkler [3]
•

h(n) = s n
β + n (1.7)

where c satisfies a parabolic equation (see Orme and Chaplain [4])
• A polynomial function h(n) = np.

Myerscough et al. [5] study numerically the steady states of (1.1)–(1.5) and (1.7) focusing on the role of
boundary conditions. In [5] the authors found non-constant steady states for a range of boundary conditions
including (1.3) and (1.5). The parameters studied in [5] are not considered in Theorem 1.2.

We will study the problem (1.1)–(1.5), for a general function h satisfying

h is locally Lipschitz function, (1.8)

there exists a positive constant α > 0 such that

0 ≤ h′ ≤ µdc2χ (1− α). (1.9)

We also assume that the initial data u0 ∈W 2,p(Ω) for some p > N ,
∂u0

∂n⃗
= 0 in ∂Ω

and there exist positive constants n0 and n0 such that

0 < n0 ≤ n0 ≤ n0 <∞. (1.10)

In Section 2 we prove the following theorem.

Theorem 1.1. Under assumptions (1.8)–(1.10), there exists a unique solution (n, c) to (1.1)–(1.5) and it
satisfies

|n− 1|L∞(Ω) + |c− h(1)|L∞(Ω) −→ 0 when t −→∞. (1.11)

In Section 3 we shall use Theorem 1.1 to study the steady states of (1.1)–(1.5). The result is enclosed in
the following theorem:
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Theorem 1.2. Under assumptions (1.8) and (1.9), the strictly positive steady states of problem (1.1)–(1.5) sat-
isfying (1.6) and (1.7) are

n = 1, c = h(1).

2. Proof of Theorem 1.1

Expanding the chemotaxis term in (1.1) we obtain

nt − dn∆n = −χ∇n · ∇c− χn∆c+ µn(1− n) in x ∈ Ω , t ∈ (0, T ).

Thanks to (1.2), (1.1)–(1.5) becomes

nt − dn∆n = −χ∇n · ∇c+ χ
dc
n(h(n)− c) + µn(1− n) (x, t) ∈ Ω × (0, T ), (2.12)

−dc∆c = h(n)− c in x ∈ Ω , (2.13)
∂n

∂n = 0 on x ∈ ∂Ω , t ∈ (0, T ), n(0) = n0 on x ∈ Ω , (2.14)

∂c

∂n = 0 on x ∈ ∂Ω . (2.15)

We introduce the system of ODEs:

nt = χ
dc
n


h(n)− h(n) + µdc

χ
(1− n)


, n(0) = n0 := max

x∈Ω
{n0(x)}, (2.16)

nt = χ
dc
n


h(n)− h(n) + µdc

χ
(1− n)


, n(0) = n0 := min

x∈Ω
{n0(x)}. (2.17)

Lemma 2.1. Under assumptions (1.8)–(1.10), the solutions to (2.16), (2.17) satisfy

0 < n ≤ n, for t > 0

if n0 ≤ n0.

Proof. Since h is a locally Lipschitz function, using (1.8) and (1.9), we know that there exists a unique
solution (n, n) in (−ϵ,∞) for some ϵ > 0. Since the solution to (2.17) with initial datum n0 = 0 is n = 0,
and n0 > 0, by uniqueness of the problem (2.16)–(2.17) we obtain 0 < n for all t <∞. Let ñ be the solution
to the problem

ñt = µñ(1− ñ). (2.18)

Then, taking initial data n0 = n0 > 0, it results in the fact that n = n = ñ is the unique solution to (2.16)
and (2.17). Uniqueness of the problem (2.18) and the inequality n0 ≤ n0 prove that n ≤ n and the proof
ends. �

Remark 2.1. Note that, as a consequence of the previous lemma and (1.9), n satisfies nt ≥ µn(1 − n) and
nt ≤ µn(1− 1

2n), and then

min{u0, 1} ≤ u ≤ max{u0, 2}. (2.19)

Lemma 2.2. Under assumptions (1.8), (1.9), the solutions to (2.16), (2.17) satisfy

lim
t→∞
n = lim

t→∞
n = 1.
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Proof. Multiplying by 1
n in (2.16) and by 1

n in (2.17), we obtain

nt
n

= χ
dc


h(n)− h(n) + µdc

χ
(1− n)


, (2.20)

nt
n

= χ
dc


h(n)− h(n) + µdc

χ
(1− n)


. (2.21)

Subtracting the above expressions we get
d

dt


Ln
n

n


= χ
dc


2(h(u)− h(n)) + µdc

χ
(n− n)


,

≤ χ
dc


2 max{h′}(n− n) + µdc

χ
(n− n)


,

and by (1.9), we have the result

d

dt


Ln
n

n


≤ −α(n− n). (2.22)

Integrating (2.22), and by Lemma 2.1 we obtain Lnnn ≤ Ln
n0
n0

and then Lnn ≥ Lnn− Lnn0
n0

which implies
u ≥ nn0

n0
and by (2.19) we get

n ≥ min{n0, 1}
n0
n0

= α0 > 0. (2.23)

Thanks to Mean Value Theorem and integrating (2.22), we get

Ln
n

n
≤ e−αα0tLn

n0

n0
.

Taking the limit t→∞ we obtain

lim
t→∞
Ln
n

n
= 0. (2.24)

By (2.23), (2.19) and Lemma 2.1, thanks to (2.16) and from (2.24) we get

lim
t→∞
n = lim

t→∞
n = 1. �

Let p ∈ (N,∞) and G be the subset of functions defined by

G := {n ∈ Lp(0, T : C0(Ω)), such that n ≤ n ≤ n},

and let J : G → Lp(0, T : C0(Ω)) be defined by J(ñ) = n, where n is the solution to (2.12), (2.14) for c
defined as the solution of the equation

−dc∆c = h(ñ)− c, in x ∈ Ω , (2.25)

and (2.15).

Lemma 2.3. J has a fixed point in G.

Proof. Applying a maximum principle to (2.13), we obtain

min h(ñ) ≤ min
x∈Ω
{c(x, t)} ≤ c ≤ max

x∈Ω
{c(x, t)} ≤ max h(ñ),

and by (1.9) we have

max
x∈Ω
{c(x, t)} ≤ h(n), (2.26)

min
x∈Ω
{c(x, t)} ≥ h(n). (2.27)
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Substituting (2.26) and (2.27) into (2.12) we get
χ

dc
n(h(n)− h(n)) ≤ nt − dn∆n+ χ∇n · ∇c+ µn(1− n) ≤ χ

dc
n(h(n)− h(n)).

By construction, we can see that n is a super solution, and n is a lower solution, which implies n < n < n.
Since h(ñ) ∈ L∞((0, T ) × Ω) then, ∥c∥W 2,q(Ω) ≤ k(u, p) for any q < ∞. Substituting in (2.12) we obtain
that J(ũ) is uniformly bounded in Lp(0, T :W 2,p(Ω))∩W 1,p(0, T : Lp(Ω)) for some p > N (see for instance
Quittner–Souplet [6], Remark 48.3, p. 439). SinceW 1,p(Ω) ⊂ C0(Ω) is a compact embedding we obtain that
J(G) is a relatively compact set of Lp(0, T : C0(Ω)). Applying the Schauder fixed point theorem we obtain
the desired result. �

The fixed point of J is a solution to the problem (2.12)–(2.15), and thanks to (1.9) we have uniqueness of
solutions. The existence of solutions is obtained for arbitrary T <∞. Taking limits, we obtain the existence
of solutions in (0,∞) satisfying n ≤ n ≤ n.

From (2.26), (2.27), we have

h(n) ≤ min
x∈Ω
{c(x, t)} ≤ c ≤ max

x∈Ω
{c(x, t)} ≤ h(n), (2.28)

and taking limits when t→∞ we obtain (1.11).

Corollary 2.1. There exists a unique steady state (n, c) of (1.1)–(1.5) satisfying n > 0, and it is n = 1 and
c = h(1).

Remark 2.2. In the linear case, h(n) = n, assumption (1.9) is satisfied when 2χ < µdc.

3. Steady states

We now use Theorem 1.1 to study the steady states of the system (1.1)–(1.5), (1.7). We consider two
cases.

Case 1: µ = 0 and sχ < 4γ. We are looking for the steady states (n, c) to the problem
−∆n = −div(χn∇c) in x ∈ Ω
−∆c = s n1 + n − γc in x ∈ Ω
∂n

∂n = ∂c
∂n = 0 on x ∈ ∂Ω .

(3.29)

We introduce the unknown u = neχc, and substituting in (3.29) u satisfies−div(eχc∇u) = 0 in Ω
∂u

∂n = 0 on ∂Ω .
(3.30)

Since c ≥ 0, we have u = constant. Substituting in (3.29) results in the equations
−∆c+ γc = s ue

χc

1 + ueχc in Ω
∂c

∂n = 0 on ∂Ω .
(3.31)

Taking −∆c as a test function in (3.31) we obtain
Ω

(∆c)2dσ +

Ω


γ − sχ ueχc

(1 + ueχc)2


|∇c|2dσ ≤ 0.
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Since ueχc

(1+ueχc)2 ≤ 1/4 we have 
Ω

(∆c)2dσ +

γ − sχ4


Ω

(∇c)2dσ ≤ 0. (3.32)

If sχ4 < γ we obtain that c is constant and also n. By mass conservation principle, we obtain

n = 1
|Ω |


Ω

n0, c = s
1
|Ω|

Ω
n0

(1 + 1
|Ω|

Ω
n0)γ
. �

Case 2: µ > 0 and n ≥ n > 0 for some constant n.
Let Ω ⊂ RN for N ≥ 1, then

−∆n = −∇χ(n∇c) + µn(1− n) in x ∈ Ω

−∆c = s n1 + n − c in x ∈ Ω ,

∂n

∂n = ∂c
∂n = 0 in x ∈ ∂Ω .

(3.33)

We study the steady states of the above system under the assumption:

there exists a constant n > 0 such that n ≥ n > 0 in Ω . (3.34)

Notice that |h′(n)| ≤ s for n ≥ 0 then, thanks to Theorem 1.1 we have that under the assumptions

dc = 1, 2χ < µ,

the positive steady states satisfying (3.34) are given by

n = 1, c = s2γ .
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