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Recent trends in educational technology focus on designing systems that can support students while 
learning complex psychomotor skills, such as those required when practicing sports and martial 
arts, dancing or playing a musical instrument. In this context, artificial intelligence can be key to 
personalize the development of these psychomotor skills by enabling the provision of effective 
feedback when the instructor is not present, or scaling up to a larger pool of students the feedback 
that an instructor would typically provide one-on-one. This paper presents the modeling of human 
motion gathered with inertial sensors aimed to offer a personalized support to students when learning 
complex psychomotor skills. In particular, when comparing learner data with those of an expert 
during the psychomotor learning process, artificial intelligence algorithms can allow to: i) recognize 
specific motion learning unis and ii) assess learning performance in a motion unit. However, it 
seems that this field is still emerging, since when reviewed systematically, search results hardly 
included the motion modeling with artificial intelligence techniques of complex human activities 
measured with inertial sensors. 

Keywords: Artificial intelligence, Algorithms, Psychomotor learning, Motion modeling, Inertial 
sensors, Personalization. 

1.   Introduction 

Learning is a complex activity where different aspects are commonly interwoven. These 
not only include cognitive aspects associated with thought, but also affective (e.g. 
feelings, emotions) and psychomotor (e.g. kinesthetic skills, body movement) aspects1. A 
range of Artificial Intelligence (AI) tools and approaches have been integrated into 
learning systems mostly to personalize learning experiences as it is disseminated in the 
conference series on ‘Artificial Intelligence in Education’ (AIED)a which is now in its 
twentieth edition. However, the focus so far has only been put on the first two aspects, 
similarly to my personal research experience which has evolved from cognitive aspects 
(e.g., a computer assisted assessment system extended with natural language processing, 
user modeling, and recommendations based on human computer interaction and data 
mining techniques2) to affective issues (e.g., combining several input sources to improve 
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affect recognition with machine learning techniques from learners’ behavior on diverse 
domains such as Maths3 or learning a second language through oral4 or writing5 practice). 
However the psychomotor aspects have hardly been addressed in current research6, but 
they are called to be the next disruptive factor in educational technology (as 
acknowledged by the inclusion of that review6 in the 25th Anniversary Issue of the 
International Journal of AIED entitled “The Next 25 Years: How Advanced Interactive 
Learning Technologies will Change the World”b). In fact, some efforts have already been 
done in that direction aimed to develop intelligent tutoring systems for psychomotor 
tasks7.  

In this context, AI innovations can contribute to develop tools that foster the learning 
of psychomotor skills by providing –and even extending– human capabilities in some 
way, such as reasoning, learning, remembering, planning and analyzing. For example, AI 
techniques can be used to teach people how to play an instrument8, to provide vibrotactile 
feedback on their martial arts technique9, to measure the ‘timing’ of a dance step and how 
this could be mapped with experts’ movements10, to improve the sport technique11, etc. 
These learning domains have traditionally been less studied compared to other 
‘mainstream’ AI-supported learning domains, such as Math.  

As inertial sensors are powerful motion measurement devices and are becoming 
inexpensive and embedded in many wearable devices12, it is becoming possible and 
easier to collect rich and meaningful data about learners’ physical activity in terms of 
kinematic information of the body movements. In addition, inertial sensors overcome the 
drawbacks of video-based approaches13,14, which are high sensitivity to light conditions 
and demanding requirements on equipment and infrastructure. In this way, it can be 
possible to build personalized adaptive psychomotor learning systems6 where: (1) inertial 
sensors collect information about learners’ motion, (2) algorithms model the movement 
performed, (3) knowledge elicitation techniques are used to design multi-sensorial 
feedback and (4) actuators finally deliver the appropriate multisensorial personalized 
feedback to learners in each specific learning situation.  

In learning contexts where the psychomotor aspect is the focus, learning commonly 
involves learners watching the expert performing the movements and then practicing 
over and over to master those movements until they resemble more and more to the ones 
performed by the expert15. Thus, developing tools that can support and provide runtime 
feedback to learners in their psychomotor learning process requires effective modeling 
techniques that can allow in runtime the comparison between the expert and the 
learner13,14, taking into account critical aspects such as individual differences, the level of 
experience, the evolution of the learner over time, the physical context where the 
performance is executed, etc. In this sense, bringing AI into the psychomotor learning 
realm requires effective sense-making capabilities and dynamic modeling of learners’ 
motion to select the appropriate multisensorial intervention when the learner does not 
execute the movement correctly16. Hence, offering this intelligent behavior adapted to the 

 
b https://link.springer.com/article/10.1007/s40593-016-0109-9  
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current situation and performance requires effective AI approaches that should follow 
the four phases identified in the e-learning life cycle17, namely: i) design (adaptation 
hooks upon which the runtime processing bases its reasoning), ii) publication 
(management of data to allow users access the learning experience), iii) use (access to the 
tools that provide the personalized learning experience) and iv) auditing (collects usage 
data to analyze learning experience).  

In this context, this paper provides some insights into how advanced the area of AI-
supported psychomotor learning is and discusses the potential of AI to model the motion 
of complex human activities from a psychomotor learning perspective using inertial 
sensors during the use phase of the e-learning life cycle. The rest of the manuscript is 
structured as follows. Section 2 introduces the domain of psychomotor learning, the 
aspects to be taken into account to define psychomotor objectives and motivates the need 
for a personalized support. Section 3 positions the modeling of human motion as a 
pattern recognition problem from inertial sensor data where AI algorithms can be used to 
recognize specific motion learning units and assess learning performance in a motion 
unit. To complement this ad-hoc selection of papers, Section 4 reports a review of the 
field, which hardly found a couple of specific works regarding the modeling of complex 
human motion for psychomotor learning using AI techniques. Section 5 discusses the 
works reported in Section 3 and Section 4 in terms of i) the psychomotor objectives 
covered and ii) the AI processing followed for the motion modeling; and suggests future 
works to advance the field. Finally, Section 6 presents the conclusions. 

2.   Psychomotor learning and personalization 

Psychomotor learning involves developing skills that require the integration of mental 
and muscular activity18. More precisely, psychomotor skills involve goal-oriented 
physical actions or tasks requiring voluntary body and/or limb movements to achieve a 
specific goal19. Learners commonly train by repeating very specific movements until they 
internalize the best way to perform them effectively without conscious effort20. 
According to Mager21, in order to define psychomotor objectives, the following aspects 
must be taken into account:  
• target: what the learner will do,  
• condition: under what conditions will the performance occur, and  
• criterion for success: how to assess whether the learner has acquired the skill.  

 
These aspects will be discussed when analyzing the works reviewed in this paper, 

which are reported in Table 3 in Section 5. 
Generally, assessment requires the skill to be performed and observed several times 

using a ranking scale to score the skill22. Performance can be measured in terms of speed, 
accuracy and stamina (endurance)23. Nonetheless, there is usually a tradeoff24 between 
short-term performance (related to motivation) and long-term learning (related to 
permanent changes in behavior). For instance, repeating a motion many times together 
can make the learner improve the performance at that moment, but retention may be non-
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existent in the long-term. According to these authors (i.e., Soderstrom and Bjork)24, in 
order to induce learning, it seems better to schedule the practice of short periods over 
several times, although that may not allow the learner to execute the movement properly 
in each iteration, but the execution will improve from iteration to iteration.  

As also discussed elsewhere25, existing taxonomies26-30 agree that mastering 
psychomotor skills is commonly a gradual process. This process involves consecutive 
performance levels that can be represented as a simplified series of steps25 as follows:  

1) Low performance level, the learner can hardly recognize the movement (this 
deals with sensory awareness, recognition, involuntary actions, imitation, by 
memory, following instructions…),  

2) Supervision not needed,  
3) Fluent execution,  
4) Refinement by precision,  
5) Strengthen and coordination, and 
6) High performance level, the learner has internalized the movement (without 

thinking, sophisticated choreography transfer to other domains, creating new 
movement patterns, planning for improvement…).  

 
Psychomotor intelligent learning systems can be suitable to support learners move up 

to higher performance levels, for instance by reducing the level of scaffolding support as 
learners improve their performance, develop autonomy and need less close supervision. 
Previous analyses of the literature show that current psychomotor learning systems do not 
adapt and personalize the response according to the learners’ needs6,31. More specifically, 
the works analyzed in those reviews mainly focus on helping the learner in mimicking 
expert’s postures and gestures with optical caption technology or wearable inertial 
sensors, and provide non-personalized visual feedback about the learners’ execution.  

In order to provide personalized support during the use phase of the e-learning life 
cycle while learners develop psychomotor skills, physical actions need to be32: 1) 
monitored in real time (multimodal sensing of movement and context), 2) compared with 
experts (movement modeling to identify psychomotor errors), and 3) corrected when 
needed (design interventions and deliver multi-sensorial feedback taking advantage of 
ambient intelligence). Thus, there is a need to understand the current state of automated 
AI psychomotor support in the three areas noted above (sensing, modeling and feedback) 
so that it could be possible to identify gaps that future research should focus on. This 
paper aims to produce some insights to the modeling of learners’ motions when training 
psychomotor skills using AI techniques on data collected with inertial sensors. 

3.   AI for modeling human motion from inertial sensor data 

Automatic detection or recognition of body movements is increasingly receiving attention 
as inertial technology becomes computationally faster and cheaper and allows to gather 
human motion data33-35. The output is a continuous signal in the time domain (time 
series)36. Segments to be further processed need to be extracted from the continuous data 
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stream (Section 3.1), the raw data in these segments obtained from the sensors need to be 
abstracted in terms of relevant features (Section 3.2) and the features obtained are to be 
used as input for algorithms that model the movements comparing the data obtained from 
a learner with those of an expert (Section 3.3). At this point, two approaches regarding 
the modeling of human motion can be proposed: i) to recognize specific motion learning 
units (Section 3.3.1) and ii) to assess learning performance in a motion unit (Section 
3.3.2). Section 5 discusses how each of these steps have been addressed on systems that 
focus on learning complex psychomotor skills, such as the systems reported in this 
Section and those found in the review carried out in Section 4. 

3.1.   Data segmentation 

In order to provide the multisensorial feedback in real time, the information needs to be 
extracted from continuous streams of sensor data in a time-series analysis.  

According to Keogh et al.37 (and also reported by Avci et al.38), there exist several 
approaches for data segmentation when processing inertial signals which focus on 
changing the point of detection to try to identify time intervals when there are significant 
changes in the signal. These approaches are: 1) sliding window (adds new points until the 
fit-error for the potential segment is greater than a threshold), 2) top-down (iterative end-
point fits, which split the data at the best location), 3) bottom-up (merge adjacent pairs of 
points until the cost reaches a stopping criteria), and 4) the combined approach proposed 
by Keogh et al.37 (sliding window with bottom-up with a two level segmentation 
procedure). In addition, Zhou et al.39 introduce another approach, which is to use peak 
points to trigger the data segmentation process.  

Nonetheless, the most common approach seems to be the sliding window35,37,39, 
which has an additional advantage: it is an online algorithm, and thus, it is able to process 
a never-ending stream of inertial data on the fly.  

3.2.   Feature preparation 

The raw inertial data collected need to be preprocessed in terms of relevant features that 
model the behavior to be analyzed. Obtaining useful information in terms of features 
from the inertial data collected in a given segment can require feature extraction (Section 
3.2.1), normalization (Section 3.2.2) and dimensionality reduction (Section 3.2.3). 

3.2.1.   Feature extraction 

Feature extraction is to be done on the whole motion segment of interest. The goal is to 
find the main characteristics of a segment that accurately represent the original inertial 
data by collecting quantitative measures that allow valid, useful and understandable 
motion patterns to be compared. The resulting annotated dataset is a vector data that 
contains cues for distinguishing the movements to be modeled. 

Typically, as compiled in many works35,36,38, these features come from the time or the 
frequency domain. Avci et al.38 have produced a wider classification list, as in addition to 
features in the time and the frequency domain, they also consider the time-frequency 
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domain (Wavelet coefficients), heuristic information (such as signal magnitude area, 
signal vector magnitude, inter-axis correlation), and domain specific, tailored to the 
specific applications. Ermes et al.40 also compute speed from GPS location data and 
Ghasemzadeh et al.41 also consider morphological features such as the difference between 
the maximum amplitude and the mean of a signal segment; peak to peak amplitude of 
signal segment; start to end value of signal segment; slope, first and second derivative; 
and value and time of morphological points. Figo et al.36 include the discrete domain with 
symbolic string descriptions such as Euclidean-based distances. 

3.2.2.   Normalization 

Some works on inertial signal processing of human activities data have reported some 
kind of normalization in the data.  

For instance, Zhou et al.39 use the ratio feature to calculate the proportion of the 
feature in a single axis and the norm of the features in the three axes, so that it takes into 
account the motions performed at different strengths by different users.  

Sazonov et al.42 use maximum values overall subjects and experiments to normalize 
the data collected.  

Finally, Mattmann et al.43 subtract the mean sensor value from the base posture of 
each user.  

Nonetheless, normalizing the data seems to be currently an AI-processing tasks 
under-explored in the context of inertial sensor data.  

3.2.3.   Dimensionality reduction 

When the number of features is too high (which is typical when the aforementioned time 
and frequency values are computed when processing inertial signals), computational 
effort and memory increase. In addition, there are irrelevant features that do not provide 
useful information for the classification. Dimensionality reduction is therefore required, 
which can be done with two different approaches:  

1) feature selection: select the most discriminative features; and  
2) feature transformation: combines original features to obtain a reduced feature 

space that keeps features which collectively provide good discrimination.  
 
Avci et al.38 propose Support Vector Machines, k-Means clustering, or Forward-

Backward sequential search for feature selection, and Principal Component Analysis, 
Independent Component Analysis, and Local Discriminant Analysis for feature 
transformation. Camomilla et al.11 also suggest unsupervised approaches (usually based 
on k-means) for cluster analysis in the feature selection process. In addition, Wang et al.35 
have proposed the following methods for feature selection: Factor analysis, Minimum 
Description Length, the Minimum Redundancy and Maximum Relevance, and 
Correlation-based Feature Selection. Finally, according to Ermes et al.40, the performance 
of each feature by the area under the receiver operator characteristic curve (i.e., ROC 
curve) can also be evaluated for this purpose.  
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3.3.    Algorithms for motion modeling  

There exists wide literature on human activity recognition where the goal is to classify 
the whole movement activity the user is doing, such as walking, jumping, sitting, 
standing, etc. For that, supervised approaches are used for the classification as discussed 
elsewhere11,35,38,. In particular, these are the algorithms mentioned on those works: 1) 
Decisions Trees11,38,39, Random Forests11,35,, Nearest Neighbor11,35,38,39, Naïve 
Bayes11,35,38,, Support Vector Machines11,35,38,39, Hidden Markov Models11,35,38,, Gaussian 
Mixture Models35,38, and Artificial Neural Networks11,35,38,. 

However, none of these works have explicitly focused on how to classify human 
movements in complex learning domains. In addition, in order to provide a personalized 
response, a finer grain is required in the motion modeling. It also requires to compare the 
data obtained from a learner with the data obtained from an expert. Thus, taking as input 
my own research background in this domain6,31, I have identified the following two 
approaches to model learner motion gathered with inertial sensors aimed to offer a 
personalized support when learning complex psychomotor skills: 1) to recognize specific 
motion learning units (Section 3.3.1), and 2) to assess learning performance in a motion 
unit (Section 3.3.2). 

3.3.1.   Recognizing specific motion learning units 

Recognizing motion learning units aims to model different postures, actions or gestures 
in a given activity (time evolving movement) which are to be practiced by the learner till 
mastery reproducing the experts’ execution. These learning units can be used for instance 
to compute the time spent completing a specific motion and analyze if that time amount 
is appropriate. In addition, errors can potentially be flagged by comparing learners’ 
motion with experts’ since a finer grained analysis could help identifying repeated errors 
in the movements, which could also guide the learner into a “correct” movement. 

For this, a repository of movements can be used to assess the motion performed using 
some kind of states representation. Typically, Hidden Markov Models (HMM) are used. 
In HMM the system is modeled as a process with unobserved (hidden) states that are not 
directly visible, only the output, which is dependent on the state. This technique allows 
comparing novice’s movements with the ideal version using dynamic time warping44. 
Yamato et al.45 seem to be the first to apply HMM to recognize human action from time-
sequential data, following previous work in the area of speech recognition. However, 
these authors applied this approach only to motion data captured with image processing. 

In the music domain, Bevilacqua et al.46 have used HMMs to compare in real time a 
performed gesture when conducing an orchestra with a set of prerecorded examples using 
a real-time warping of the performed gesture to the recorded reference. In particular, each 
sensor value is associated to a Markov chain state. The multi-dimensional Gaussian 
model is used as a state observation probability function. The result is real-time 
alignment (time warping) of the performed gesture to the recorded reference. The 
comparison can be done with several references simultaneously as it computes the 
likelihood at each time. 
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Kwon et al.15 collected inertial data from sensors on users’ wrists when practicing 
karate kicks and used HMMs to identify particular movements from the motion data. The 
Simple Euclidean distance metric is used to measure the similarity between motions and 
the time to complete the task as an overall performance measure. They create a HMM per 
motion with a two-state machine topology that identifies the start and end of the 
movement. Baum-Welch method is used to find the local maximum of the probability. 
The detection process uses the Viterbi algorithm for the probability of the observations. 
The detected motion is resampled to the resolution of the reference motion in the motion 
data base to compensate for potential timing differences when comparing the reference 
and the obtained score value.  

Hence, it seems that AI algorithms allow to define different states during the 
execution of the movement along time and remove the temporal deviations among 
executions in order to recognize the motion units to be learnt. 

3.3.2.   Assessing learning performance in a motion unit  

Modeling a given motion learning unit can be done to assess the learners’ performance, 
for instance in terms of the level of skill acquisition with respect to an expert in the 
movement. Usually, learners are classified into beginners and advanced in terms of key 
performance analysis of the technique11. In addition, it might also be relevant to analyze 
if other aspects such as age, gender or way of learning impact on the performance15.  

A couple of works have been found regarding the modeling of the learning 
performance with AI techniques. Kunze et al.13 trained a Nearest Neighbor clustering 
algorithm to differentiate amateurs’ Tai-Chi movements from experts’ collected with a 
wearable inertial sensor. Authors found that expert’s inertial signals are smoother and 
more periodical. The same approach was also used to differentiate two specific Tai-Chi 
movements.  

Similarly, the same wearable was used by Heinz et al.14 to differentiate amateur and 
experts in Kung Fu. In this case, authors commented that they have used a Decision Tree 
(C4.5), Nearest Neighbor and Naïve Bayes classifiers, but do not report details. 

In this case, AI algorithms can use the classification process to find the features that 
characterize the performance level of novice learners and experts. In fact, in terms of the 
inertial signals, the execution seems to be more stable, thus producing signals that are 
more periodical and smoother. 

4.   Review of the field 

In addition to the works reported and discussed in the previous section, a review of the 
field has been carried out. For this, some search keywords have been defined to perform 
the corresponding search. The keyword “artificial intelligence” was fixed in all searches. 
First the keyword “psychomotor learning” was added, narrowing the search with "inertial 
sensors" or “accelerometer” when results were over fifty. However, as it is shown next, 
when analyzing the papers found, they did not present AI research on modeling complex 
motor tasks. Then, instead of “psychomotor learning” a more generic concept was used, 
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consisting of several combinations of human movement (or motion) modeling (or 
modelling). In this case, two papers regarding the modeling of complex human motion 
such as the ones to be trained in psychomotor learning were found.  

The databases used for the searches were the following: IEEE Explorer Digital 
Libraryc, ACM Digital Libraryd, Science Direct (Elsevier)e, Springer Linkf and Google 
Scholarg. 

In the rest of the section, the results of the searches done are reported. The review was 
performed in November 2018. In all cases the process was similar. First, the selected 
keywords were used in the proposed databases. Papers found were compiled in a 
spreadsheet, indicating the database where they were found. Next, a selection was done 
based on the title. Those whose title seemed of relevance, were selected for detailed 
reading. Relevance was evaluated based on the reading and checked if they reported the 
use of AI techniques to model the performance of complex psychomotor tasks from 
inertial sensor data.  

4.1.   Results from searches with “psychomotor learning” 

Table 1 shows the results obtained when executing the search {"artificial intelligence" 
"psychomotor learning"} in the selected databases.  

Table 1. Results obtained from the search {"artificial intelligence" "psychomotor learning"}  

Databases Results Relevant 
IEEE Xplorer Digital Library 0 0 
ACM Digital Library 0 0 
Science Direct (Elsevier) 3 0 
Springer Link 31 (3 selected for reading) 0 
 
Google Scholar 

185 (search narrowed) 
13 (when narrowed with {+“inertial sensors”}) 
17 (when narrowed with {+“accelerometer”}) 

 
0 
0 

 
It can be seen that zero results were obtained in the IEEE and ACM digital libraries, 

Science Direct showed 3 results, but none relevant. With Springer Link the number of 
results increased to 31, still none of them was really relevant, although 3 of them were 
selected for reading. In the same way, Google Scholar returned 185, so the search was 
narrowed. When narrowed with the term “inertial sensors”, 13 results were obtained, 
being 10 of them authored by the author of this paper. When narrowed with the term 
“accelerometer”, then from the 17 results obtained 9 were again from the author of this 
paper. Obviously, works from the author of this paper are considered as non-relevant, 
since the goal is to identify new papers of interest in the field.  
 
c https://ieeexplore.ieee.org/Xplore/home.jsp  
d https://dl.acm.org/  
e https://www.sciencedirect.com/  
f https://link.springer.com/  
g https://scholar.google.com/  

https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://www.sciencedirect.com/
https://link.springer.com/
https://scholar.google.com/
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4.2.   Results from searches with “human movement/motion model(l)ing” 

The literature has also been reviewed with 8 different combinations of keywords that 
include “artificial intelligence”, human movement/motion model(l)ing, and “inertial 
sensors” or “accelerometer” in the selected databases. In particular, keywords used were:  

KW1: {"artificial intelligence" "human movement modelling" "inertial sensors"} 
KW2: {"artificial intelligence" "human movement modeling" "inertial sensors"} 
KW3: {"artificial intelligence" "human motion modelling" "inertial sensors"} 
KW4: {"artificial intelligence" "human motion modeling" "inertial sensors"} 
KW5: {"artificial intelligence" "human movement modelling" accelerometer} 
KW6: {"artificial intelligence" "human movement modeling" accelerometer} 
KW7: {"artificial intelligence" "human motion modelling" accelerometer} 
KW8: {"artificial intelligence" "human motion modeling" accelerometer} 

 
Results from each search are counted in Table 2. A total of 60 distinct results were 
returned (some papers were obtained in several searches), but only 10 of them were 
selected for reading as they seemed to report research on human motion modeling with 
inertial sensors.  

Table 2. Results obtained from the searches with the 8 combination of keywords in the 
following databases: IEEE (IEEE Xplorer Digital Library), ACM (ACM Digital Library), 
Elsevier (Science Direct - Elsevier), Springer (Springer Link), and Google (Google Scholar). 
TOTAL counts the number of distinct papers obtained in each database for the 8 searches, as 
well as for the 5 databases together. 

Databases KW1 KW2 KW3 KW4 KW5 KW6 KW7 KW8 TOTAL 
IEEE    1  1   2 
ACM          0 
Elsevier        2 2 
Springer    9 9   6 10 13 
Google   1 5 13  7 10 27 50 
All          60 

 
After reading in detail the 10 papers selected, only 2 of them specifically addressed 

the modeling of psychomotor tasks with AI.  
On the one hand, Gonzalez-Villanueva et al.47 model a Yoga movement called ‘Sun 

salutation’ which consists of 12 Yoga poses. They use accelerometers to collect the 
temporal series of the motion. It focus on recognizing specific motion learning units but 
instead of defining the states with the HMM algorithm, they use a Fuzzy Finite State 
Machine to model the temporal evolution and recognize the different poses.  

On the other hand, Yamagiwa et al.48 present a clustering approach to differentiate 
beginners from experts, which relates to assessing learning performance in a motion unit. 
They use a single-class SVM to derive the distances from the origin and then output the 
results to the distance calculation, obtaining a distance matrix that represents the skill 
distance and visualizing these distances with multi-dimensional scaling. It is applied to 3 
sport activities (i.e., running form, ski’s parallel run and bat swing of baseball), although 
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inertial data is only used in the ski’s parallel run and bat swing of baseball. In the first 
case, skiers are asked to glide a slope with a smartphone on their back to measure the 
acceleration in the X and Y axes. Results shows that experts are more consistent in their 
movement. In the second case, an accelerometer and a gyroscope are attached to the 
bottom of a baseball bat. Similarly, results show that experts keep stable the swing 
performance. 

5.   Discussion 

Research on psychomotor learning modeling with AI techniques from inertial data 
collected by sensors seems to be scarce. The review carried out and reported in Section 4 
only returned two papers which complemented the four works discussed in Section 3.3 
which had been identified in previous reviews6,31. However, from those works, there 
seems to be a lot of potential from the AI perspective to model motion of complex human 
activities. Thus, this section summarizes the modeling approaches using AI and the 
psychomotor aspects (as defined by Mager21) involved in these six works. Table 3 
includes the works that recognize specific motion learning units (as discussed in Section 
3.3.1), while Table 4 includes the works that assess learning performance in a motion unit 
(as discussed in Section 3.3.2). 

The six works reported in Table 3 and Table 4 have a clear psychomotor objective 
related to the mastery of complex tasks which are completely different from one another: 
music conduction, Taekwondo punches and blocks, Yoga, Tai-Chi and Kung-Fu 
sequences, and sport techniques in ski and baseball. Their conditions focus on being able 
to properly repeat the movement to be learnt. Success criteria consider the performance 
of the movement in terms of fluidity or explosiveness, the time required or the difference 
with experts. Regarding the activity recognition process, all of them use accelerometers 
as inertial sensors to track the movements of the human body. In addition, four of them 
also use the gyroscope. Thus, the signals need to be processed with AI techniques as a 
time series problem. When reported, the segmentation is done following the sliding 
window approach. None of the works have normalized the features nor reduced them. In 
fact, features extracted differ among the different systems and are very few. The works 
that focus on recognizing specific motion learning units (Table 3) use some kind of state 
machine to compare the current motion with predefined postures. For this, either HMM 
or a finite state machine extended with fuzzy logic is proposed. In turn, in those that 
focus on assessing learning performance in a motion unit (Table 4), the goal is to 
differentiate novice learners from experts. Decision Tree, Nearest Neighbor, Naïve Bayes 
and SVM classifiers are used. 
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Table 3. Research on modeling psychomotor learning to recognize specific motion learning units with AI algorithms on inertial sensor data. 

Reference Inertial sensors 
used 

AI for modeling human motion Psychomotor aspects 
Data segmentation Feature preparation Algorithm Target Condition Success criteria 

Bevilacqua et al.46 Accelerometer and 
gyroscope 

Not needed: gestures 
are obtained 
independently 

None: seem to work with 
raw sensor values (e.g., 
acceleration in axis x, y 
and z) 

HMM to compare in real 
time a performed gesture 
with a set of prerecorded 
examples 

Music conduction  
 

Listening a sound file 
 

Smoothness and 
fluidity, without rigid 
postures nor stiff 
gestures 

Kwon et al.15 Accelerometer Defines de concept of 
motion chunk, but the 
approach is similar to 
the sliding window: 
compute standard 
deviation over 10 
points of raw signal, if 
the second standard 
deviation is above a 
threshold, assume that 
motion starts 

Pitch and roll angular 
values in Euler 
coordinate system.  
Define posture (static 
constant values) and 
gesture (dynamic 
movements defined by 
velocity)  

HMM to recognize 
reference motions from 
segmented motion chunks 

Taekwondo motions 
(punch, outside block, 
upper block, inside 
block and down 
block) 

Posture and gesture 
training 
 

Time to complete task 
(learn posture and 
rapid succession in 
gesture)  

Gonzalez-
Villanueva et al.47  

Accelerometer Not needed, states are 
explicitly defined from 
knowledge of the 
phenomenon 

Angle for each of the 5 
sensors with respect to 
the vertical axis (in the 
spherical coordinate 
system) and their 
derivatives 

Fuzzy Finite State 
Machine to model the 
temporal evolution and 
recognize poses 

Yoga movement (Sun 
salutation) consisting 
in 12 sequential poses 

Balance between 
flexion and extension 

Duration of poses and 
stability 
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Table 4. Research on modeling psychomotor learning to assess learning performance in a motion unit with AI algorithms on inertial sensor data. 

Reference Inertial sensors 
used 

AI for modeling human motion Psychomotor aspects 
Data segmentation Feature preparation Algorithm Target Condition Success criteria 

Kunze et al.13 Accelerometer and 
gyroscope 

100 sample sliding 
window 

20 features, only 
mention the ones used in 
the classification: 75% 
percentile, frequency 
range power on 
accelerometer axis, root 
mean squared. 

Nearest Neighbor to 1) 
differentiate expert from 
amateur, and 2) to classify 
2 different movements 

Basic Tai-Chi forward 
and backward 
movements of the first 
form  

Repeatedly perform 
movements 

Reduce probability of 
failing 

Heinz et al.14 Accelerometer and 
gyroscope 

100 sample sliding 
window 

20 features including: 
absolute value, 
frequency entropy, 
frequency range power, 
median, mean, 75% 
percentile, standard 
deviation, variance for 
each axis, and absolute 
sum 

Decision Tree (C4.5), 
Nearest Neighbor and 
Naïve Bayes to cluster 
novices and experts 
 

Chum Kiu motion 
sequence in Wing 
Tsun (a popular form 
of Kung Fu) 

Repeatedly perform 
movements 
 

Explosiveness of 
execution 

Yamagiwa et al.49 Accelerometer and 
gyroscope 

No mentioned No mentioned  SVM and multi-
dimensional scaling 
visualization is used to 
identify the difference 
between the current data 
and the target skill 

Sport techniques:  
ski’s parallel turn and 
baseball bat swing. 

Trainings to acquire 
the skill 

Distance to target skill 
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The analysis performed in this paper has limitations since it is not deep enough to 
comment on the strength and weaknesses of each approach and technique. Nonetheless, it 
serves as an initial contribution to point out that currently there are not many works that 
apply AI to provide personalized support for psychomotor learning of complex motion 
skills but AI definitely has a great potential for that and it is expected to see more 
research in this direction in the near future. In any case, the works reviewed in this paper 
have provided some insights in the research directions to follow. First, inertial 
information collected from accelerometers and gyroscopes seems valuable. Second, data 
segmentation has not been explored in detail, but it has a big impact for the real time 
delivery of multisensorial feedback. Since current works focus on the modeling, they 
usually assume that the data is already segmented, but that is not the case in a real world 
scenario where feedback needs to be applied on the fly. Third, feature preparation is also 
under considered: there is not a real analysis in the papers on the features to be 
considered and data normalization is not carried out in none of the works. Fourth, the 
application of AI algorithms has clearly at least two distinct objectives which can lead to 
different research lines: 1) compare recorded movements with prerecorded references 
using algorithms that model different states accounting for time variability, such as HMM 
or finite states machines, and 2) differentiate experts from novices with typical 
classification algorithms (Decision Trees, Nearest Neighbor, Naïve Bayes and SVM). 

In this context, future work can go in several directions. Following the above, more 
work needs to be done in terms of feature extraction and selection. In this sense, martial 
arts provide an interesting and useful testbed to explore the modeling and personalization 
in psychomotor learning31 because they involve the repetition of well-defined, precise 
and varied movements that can be measured with current sensor technology. The work 
introduced elsewhere49 to research on features preparation is still on-going and has been 
extended to model two specific movements in the practice of Aikido martial art, which 
are knee walking (called ‘shikko’) and the swings with a wooden sword (called ‘bokken’) 
that have been measured in the wild using the accelerometer and gyroscope of a 
smartphone.  

In addition, research needs also to be done in standardizing the methodologies for 
labelling data that can facilitate replicability and scalability of insights. One candidate 
can be Labanotation as discussed elsewhere50. In particular, the Laban Movement 
Analysis51,52 can serve to identify body parts that are mobile, human dynamics or effort 
involved, shapes made and the transformation process from shape to shape and how 
space is occupied both in stationary and locomotor movement.  

There is also need for methodological approaches that can elicit the appropriate 
multisensorial intervention to be delivered when the learner does not execute the 
movement correctly. Here, the TORMES methodology53, which has already been used to 
identify both cognitive-oriented54 and affective-oriented55 recommendations, can be 
considered. 
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In parallel, a comprehensive framework that could serve as a reference to identify the 
appropriate AI techniques for providing personalized support for complex learning 
situations that involve the development of psychomotor skills should be developed.  

It would also be necessary to research how emotions influence the learning and 
performance of the physical movements during the psychomotor learning process of 
complex tasks. For this, the four methodological steps identified in the INT2AFF projecth 
should be considered in the context of psychomotor learning: 1) gathering affective 
information, 2) detecting affective states, 3) modeling the affective state, and 4) 
responding to affect.  

In addition, movement modeling can also be applied in embodied learning, where 
movement is used to improve cognitive tasks and focus on the most appropriate 
movements to reinforce content being learnt56 or even to support STEAM (Science, 
Technology, Engineering, Arts and Math) education by making the Physics concept of 
moment of inertia easier to understand with the practice of Aikido movements57.  

Moreover, research on physical activity (increasing overall activity, especially at 
higher intensity levels) might also contribute valuable insights that can be used for 
learning58 including in the long-term59. 

Finally, movement modeling can also be used for improving proxemics interaction 
(i.e., the study of interpersonal and environmental space), in particular, it can be applied 
to identify the physicality aspects of learning in the classroom, especially for supporting 
teamwork learning or the impact of physical aspects of learning in the orchestration of the 
classroom60. For instance, current wearable devices combined with AI techniques can 
generate evidence of physical movements and gestures in the context of collocated 
teamwork that can be used for reflection during a debrief session. 

6.   Conclusions 

This paper has analyzed existing literature on systems that support learning of complex 
psychomotor skills, such as those required when learning sports and martial arts 
techniques, yoga postures or conducting music. The analysis reported here has focused on 
the AI algorithms used to model learners’ movements so they can be supported in a 
personalized way when learning complex psychomotor skills. Two main approaches have 
been identified where AI algorithms are needed: 1) recognizing specific motion learning 
units, and 2) assessing learning performance in a motion unit. The first case has mainly 
been addressed using algorithms that can represent motion states (such as HMMs) while 
removing the temporal information, while for the second, classification algorithms have 
been applied on labelled data to differentiate performance level. However, a scarcity of 
AI techniques for modeling motion in the context of learning has been noted. However, it 
is expected that AI research based on inertial sensor data to support the learning of 
psychomotor complex tasks grows in the near future.  

 
h INT2AFF project: INTelligent INTra-subject development approach to improve actions in AFFect-aware 
adaptive educational systems. Project website at: https://adenu.ia.uned.es/web/en/int2aff.  

https://adenu.ia.uned.es/web/en/int2aff
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