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ABSTRACT

In this work, we present an experimental study
that aims to explore the potential application of
Hidden Markov Models (HMM) to predict the state
of concentration of learners. The features used for
the prediction are extracted from 4 commonly used
physiological signals, namely heart rate, breath rate,
skin conductance and skin temperature. Previous
works that pointed how emotion translates into different
physiological responses from one subject to another have
motivated the study of intra-subject learner models.
Thus in this work both inter-subjects and intra-subjects
approaches have been evaluated. To this end, we have
built a labelled dataset from an intensive data capture
on 2 different subjects that developed different learning
tasks across several sessions. Results are consistent
across users and show that a high accuracy can be
achieved when using HMM-based intra-subject models,
but inter-subject models fail at the same task.

INTRODUCTION

Adaptive learning systems can be used to intelligently
manage the affective dimension of the learner due to
the interplay of affect and learning-related cognitive
processes as reported in literature Blanchard et al.
(2009). Different affective states can influence the
learning process in a different way. For example, there
are strong evidences coming from previous research that
emotions have an important effect on the student’s
engagement and motivation, and consequently influence
learning outcomes Pardos et al. (2014), Pekrun et al.
(2010), Ainley (2006). Previous studies place engaged
concentration as the most prevalent affect in a classroom
context Pardos et al. (2014). Engaged concentration
is a state of engagement with a task such that
concentration is intense, attention is focused, and
involvement is complete. Thus, an effective detection
of the concentration state over time is a crucial task
for adaptive learning systems that aim to take proper
actions in order to improve the student’s engagement.

A main issue confronted in this research area is how
to improve the recognition performance. Related works
show two different approaches to tackle the modelling
of affective and cognitive states, inter-subject and intra-
subject modelling approaches. Subject-independent
(inter-subject) approaches focus on the affective state
and build a global model by treating data from different
subjects as if they all belonged to the same individual,
as it occurs in Salmeron-Majadas et al. (2015),
Purnamasari and Junika (2019), Nizetha Daniel et al.
(2017), Reyes et al. (2016). However, the performance
of physiological data-driven models are limited to the
poor generalisation of the signals at reflecting emotional
information across subjects. Indeed, studies reveal
that the same stimulus can elicit different emotions
and the same elicited emotion translates into different
physiological responses from one subject to another,
Hajlaoui et al. (2018). So, to deal with this problem
other works produce an intra-subject model, which
simultaneously considers the affective/mental state and
the subject, and only use training data coming from
the same targeted subject they try to predict on, Duan
et al. (2013), Kim and André (2008). Despite there
are some works that reflect relatively high prediction
rates obtained with the first approach, inter-subject
e.g. Ayesh et al. (2014) and Salmeron-Majadas et al.
(2015), the benefits of the latter have recently been
proved in Arevalillo-Herráez et al. (2019), Arevalillo-
Herráez et al. (2019), Arnau-Gonzalez et al. (2020),
showing that the subject-dependent component in
Electroencephalography (EEG) signals is far stronger
than the emotion-related component.

In this work, we study the performance of both
inter-subject and intra-subject approaches at detecting
concentration in an educational scenario, by using
Hidden Markov Models (HMM) that are trained with
physiological data. To this end, we run a data collection
experience in which we captured a set of physiological
signals that were already identified in Uria-rivas et al.
(2019) as valuable information to identify changes in
the subject’s mental state, namely heart rate, breath
rate, skin conductance and skin temperature. The data
collected was labelled offline by a set of independent
experts, who identified the concentration state by using
both synchronised video and audio recordings and
personal one-to-one interviews with the subjects to
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verify and improve the labelling, as described in Saneiro
et al. (2014). Finally, we used HMM to study whether
the information contained in the physiological signals
can effectively be used to predict concentration.
The results reveal that the concentration state can be
accurately modelled by a multimodal HMM built from
the physiological signals, but only when an intra-subject
model is adopted. The results presented remark on
the necessity to model each subject individually, unlike
other related works which only focus on inter-subject
user modelling. Intra-subject modelling implies a subs-
tantially more intense labelling effort from a practical
perspective, due to the intensive data capturing process
that is required. However, the large difference in
detection accuracy between the two types of models
suggests that more effort should be placed on the
development of intra-subject models, in contrast to
inter-subject models that fail to capture subject traits
related to how physiological signals are affected by
cognitive or affective states at an individual level.

RELATED WORK

Affect recognition has been successfully applied to
marketing Krishna (2012), Garbas et al. (2013), health
Tokuno et al. (2011), Moussa and Magnenat-Thalmann
(2009) and more recently to learning systems Ghaleb
et al. (2019), Farzaneh et al. (2019). Among the vast
previous research on affect recognition in e-learning
environments, some of them have focused on the
detection of the level of concentration, as one of the
most relevant cognitive states in relation to learning
Baker et al. (2010). This is in support to other previous
research works that have shown that concentration
is significantly correlated with learning, engagement
and student performance Corno and Mandinach (1983),
Suryanti et al. (2019).
Different approaches are applied in detection of
concentration, namely sensor-free approaches, based
on visual information approaches and based on
physiological data approaches.
With regard to sensor-free approaches, one method to
detect the students’ affect based on their interactions
with an online learning system was proposed in Baker
et al. (2012). Similar sensor-free interaction based
approaches have been presented in other more recent
works like Botelho et al. (2017), Ocumpaugh et al.
(2014), Arevalillo-Herráez et al. (2017) and Cunha-
Perez et al. (2018), but the accuracy achieved has not
significantly improved the value reported in Baker et al.
(2012).
As concerns visual sources of information, they have
the advantage that some indicators are valid across
subjects. Ekman’s Ekman (1997) research is a universal
coding system and reliably relates emotions with facial
muscle activation. This enables the use of inter-subject
models that are valid across the entire population,

without significantly degrading performance. A variety
of combinations of machine learning techniques and
metrics from an eye-tracking system were attempted in
Nizetha Daniel et al. (2017). The highest classification
accuracy of the proposed system was achieved when
a Multilayer Perceptron was used. However, they
disregarded both the context and the subject traits,
e.g. distractions caused by environmental elements
not related to the course content. In Krithika and
Lakshmi Priya (2016), concentration detection was
based on a continuous monitoring of the learner’s
head rotation, eyelid opening, and visual focus on the
content. A similar approach was also followed in Sharma
et al. (2019), combining information about eyes and
head movements with facial expressions to produce
a concentration index in real-time while answering a
quiz. Results revealed that the proposed system was
unable to deal with the problem of face occlusion.
As a consequence, such system assigns a low level
of concentration to student’s which, in view of their
quiz results, were concentrated. Automatic real-
time recognition of student engagement from students’
facial expressions is also explored in Whitehill et al.
(2014). In this work, four binary classifiers are trained
for the automatic discrimination of engagement from
static images of students’ faces, based on the Action
Units from The Facial Action Coding System, among
other features. The results showed high inter-observer
reliability when discriminating low versus high levels of
engagement.
There are also some previous works that apply
physiological sensors to detect concentration of learners.
These methods are usually more intrusive than the
ones in the visual category and require more expensive
equipment. However, they are able to provide
complementary data that can be used to enrich the
information coming from visual sources and potentially
increase the accuracy rate. In general, the existing
literature suggests that methods based on physiological
signals are generally less accurate. For example, in Hsu
et al. (2012) a reading concentration monitoring system
is proposed using sensor technologies. The sensors
used in the study included a webcam, a heartbeat
sensor, and a blood oxygen sensor. EEG signals are
used to determine whether students were attentive or
inattentive in Liu et al. (2013). In a similar way,
EEG sensors were used in Kosmyna and Maes (2019)
to directly calculate an engagement index through the
value of the neural oscillations provided by the sensors.
Nevertheless, we argue that the lower accuracy obtained
with physiological signals is actually due to the higher
influence of subjects traits on the way this type of
signals are affected by cognitive or affective states. Most
previous works on subject’s concentration detection
have generally followed an inter-subject approach, which
is inappropriate because of the intrinsic nature of
physiological signals. In this paper, we show that even



using some of the most simple and easily acquirable
physiological signals we may reach an accuracy of the
same order as visual methods, provided that subjects
are modelled in an individual way.

EMPIRICAL RESULTS

Data collection

A data collection experience was conducted to
evaluate the proposed approach to automatically detect
concentration patterns from physiological signals. In
order to verify that our methodology provides an added
value in a practical setting, data collection took place
in a real school, while students interacted with a series
of learning tasks. The experience was repeated for 2
different users U = {u1, u2}, who previousy had signed
a consent form.
The student interaction was recorded in video, within a
framework that supports tracking and labelling from a
single-subject experiment, including on site and offline
data labelling Santos et al. (2016). At the same
time, we used the Physiological Acquisition Shield
(PhyAS) described in Uria-rivas et al. (2019) connected
to an Arduino Uno to capture 4 simple but effective
physiological signals at a rate of 10Hz: heart rate, breath
rate, skin conductance and skin temperature. The video
and physiological signals recordings were synchronized
by using the system’s clock.
In order to have enough information to build intra-
subject models, each student participated in 4 sessions,
each doing a different learning activity. There were two
different types of sessions. The first three ones were
focused on detecting the affective state of the user and
the fourth included an additional task where users got
feedback when they entered a state of excessive agitation
that would hamper their performance. These followed
the approach of related work Santos et al. (2016), but
we used an improved shield that reduced the number
of control units to a single one, in the same way as in
Uria-rivas et al. (2019). The first two sessions consisted
of a series of math exercises with an increasing level
of difficulty. The third session consisted of a series of
logic exercises that the student had to solve. These
first three sessions involved tracking the students with
the aforementioned sensors while they where performing
some tasks with their keyboards and mouse. The fourth
session was an oral test in a second language (English),
which consists of a voice baseline and two oral activities
with increasing level of difficulty.

Data labelling

The video recordings were used to manually label the
data trough a flexible and detailed labelling approach
Saneiro et al. (2014). Two different experts, one with
a psychology background and the other with over 6

Table 1: Number of samples per subject

Concentrated
samples

Non-concentrated
samples

subject 1 8 78
subject 2 11 121

year experience in affective computing, independently
labelled the dataset. They identified specific moments in
the video where the user seemed to have reached one of a
set of specific mental states, such as concentrated, and
used the application described in Santos et al. (2016)
to mark the time where they believed the peak was.
After labelling, a validation meeting was held with each
participant, correcting the labelling where appropriate.

Data preparation

As it happens with most other mental states,
concentration does not happen all of a sudden. We
hence can reasonably assume concentration on a time
frame of 5 seconds previous to the identified peaks.
Based on this hypothesis, we took each time mark
reported as a concentration peak by the experts and
isolated the physiological measurements of the 5 seconds
previous to it. This yielded a matrix of size 4 ×
50 (4 physiological signals × 50 measurements per
signal) for each concentration label reported, containing
information about how the signals evolved until the
concentration peak was reached. We call each of these
matrices a concentrated sample.

In order to generate non-concentrated samples, we
discarded the first second of the physiological signals
and chose 5 second disjoint slots that were at least two
minute apart from any identified concentration peak.
We also guaranteed a minimum of a 5 second separation
space between any two non-concentrated samples.

The number of positive and negative samples per user
are shown in Table 1.

Description of experiments

In order to analyze the validity of inter-subject and
intra-subject models to predict concentration, we
devised 3 experiments, which were repeated for the 2
users in U . In the first two experiments, we used two
sets of samples S+ and S−, whose elements differed
on whether they met a certain criterion C. We then
applied a 5-fold cross-validation scheme based on the
elements in S+. For each fold, we used 80% of the
samples in S+ to train a HMM model. Once the model
θ was built, we computed the probability p(X|θ) for
each sample in the test set, which was composed of
the remaining 20% of the samples in S+ and all the
samples in S−. The scores produced for each sample in
the test set were hence related to the probability that



the sample met the specified criterion C. In order to
evaluate the effectiveness of the model to discriminate
samples according to whether they met the criterion
C, the results from the 5-folds were used together to
build a Receiver Operating Characteristic (ROC) curve
and compute typical accuracy indicators. The accuracy
indicators that were used are the Area Under the ROC
Curve (AUC) and the Equal Error Rate (EER).

In the first experiment, we aimed to test whether the
information contained in the physiological signals of
an individual can be used to train a HMM model
that is able to detect when the subject is concentrated
from an unseen sample of the signals. We repeated
the experiment for each subject ui, always focusing
on samples from the same subject and defining the
criterion C as whether the sample was labelled as
concentrated. In this case, S+ was composed of
all concentrated samples for ui and S− contained all
non-concentrated samples for the same individual (see
definition of concentrated and non-concentrated samples
in Section ). In the second experiment, we studied
whether subjects can be easily distinguished by how
concentration affects their physiological signals. This
time, we only considered concentrated samples and
defined the criterion C as whether the sample belongs to
a given user ui. Thus, and again for each ui, S

+ included
all concentrated samples for ui, and S− all concentrated
samples for the rest of the subjects (U − {ui}).
Finally, the third experiment attempted to determine
whether it is possible to build an inter-subject HMM
model that is able to accurately predict concentration
for an individual ui, without using data from that
subject. In this case, we followed a slightly different
setting. For each user ui we run a single validation
experiment using all concentrated samples from subject
ui as training data. The test set was then built using all
concentrated and non-concentrated samples from users
in U − {ui}. Results were assessed using the same
measures as in the previous two experiments.

First Experiment

Fig. 1 represents the ROC curve for the first of the
experiments, in which the model was fit by taking
80% of the concentrated samples from one subject and
tested against a set that contained both concentrated
and non-concentrated samples of the same subject. For
each testing sample X, the probability p(X|θ) was used
as a prediction of whether the user was concentrated.
The AUC and EER for each user are also shown at
the right-hand-side of the same figure. The lowest
AUC corresponds to the second subject and it is still
quite promising. An average AUC=0.84 suggests that
concentration can be predicted in a relatively accurate
way when the model has been trained with labelled data
from the same subject.
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(a) ROC curve

User Training Total test
1 32 398
2 44 616

(b) Experiment sample

User AUC EER
1 0.80 0.20
2 0.88 0.17

Average 0.84 0.185

(c) Accuracy results

Figure 1: Results for each user ui, using concentrated
samples from ui as training data and testing on
concentrated and non-concentrated samples from the
same user. The ROC curves indicates that the model
is able to predict with a high accuracy whether a
given sample belong to the concentrated or the non-
concentrated category.

Second Experiment

Fig. 2 shows the results when the model was trained
with 80% of the concentrated samples from a user
ui and tested against concentrated samples from all
subjects. For each testing sample X, the probability
p(X|θ) was used as a prediction score of whether the
sample belonged to the user ui. The high AUC and low
error rates obtained in all cases clearly indicate that the
way concentration reflects on the physiological signals
is subject-dependent, to such an extend that from a
concentrated sample we can accurately find out which
user the sample belongs to.

Third Experiment

The relatively higher accuracy values obtained in the
second experiment as compared to those obtained in
the first one suggest that the subject’s influence in
the physiological signals is higher than that caused
by the mental state itself. This finding motivated
this third experiment, to test results when a model is
created by using data coming from subjects other than
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(a) ROC curve

User Training Total test
1 32 153
2 44 141

(b) Experiment sample

User AUC EER
1 0.90 0.13
2 0.97 0.18

Average 0.93 0.15

(c) Accuracy results

Figure 2: Results for each user ui, using concentrated
samples from a user ui and testing on concentrated
samples from all subjects in U . The ROC curves
indicates that, given a concentrated sample, it is
possible to accurately identify which user it belongs to.

the target. Fig. 3 shows the ROC curve for each
user ui, when the model is trained with concentrated
samples from all other users, and tested against positive
and negative samples from user ui. AUC and EER
values are also shown at the right-hand-side of the
plot. Results reported are extremely closed to a
random classifier and reinforce the hypothesis that the
subject-related component of the physiological signals is
stronger than the concentration-related one, and reveal
the inadequacy of inter-subject models in this particular
context.

Discussion of Results

HMM intra-subject models have shown to be extremely
powerful at detecting concentration. Results reported
in the first experiment are encouraging, and endorse
the use of HMM models in this context. Positive
results were consistently obtained for the 2 users,
with an average EER of 0.185, despite that the
labeling methodology is not exempt from potential
mistakes. For example, and because data was relatively
scarce, all 5 second signal frames were labelled as
concentrated or non-concentrated, instead of discarding
frames where experts expressed doubts. We believe
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User Training Total test
1 8 398
2 11 352

(b) Experiment sample

User AUC EER
1 0.51 0.49
2 0.50 0.47

Average 0.50 0.48

(c) Accuracy results

Figure 3: Results for each user ui, using concentrated
samples from a user ui and testing on concentrated
samples from all subjects in U . The ROC curves
indicates that, given a concentrated sample, it is
possible to accurately identify which user it belongs to.

that improving the labelling methodology could cause
a further reduction of the EER and yield even better
results. Furthermore, a true ROC curve is smooth.
However the lack of enough positive samples in the
cross-validation experiments make the ROC curves very
jagged. Therefore, the improvement in the labelling
will also make the curves smother. In addition, and
thinking of practical settings, there is still room for
improvement by combining different approaches, e.g.
considering the scores in consecutive signal frames and
setting a threshold based of the proportion of positive
judgements on the last frames.

On the negative side, there are factors that limit the
applicability of the intra-subject approach. Apart from
the intrusiveness of the devices (something we have
been always trying to reduce to the minimum by using
smart bracelets and belts that measure physiological
signals such as those considered in Uria-rivas et al.
(2019)), this presented method suffers from the intrinsic
difficulty of training a model with large amounts of data
from the same subject. First, this restriction makes
the approach not suitable to predict concentration on
previously unseen subjects. Second, intra-subject data
collection is generally time and effort-consuming. In our
case, we required a planned data collection experience



for each subject, which involved an average time of
42 minutes of user interaction, plus the data labelling
effort and validation meetings held with experts. In all
each user devoted to the experience one hour over four
consecutive day. This was meant to help the user feel
rested and avoid fatigue after every experience.
Joint observation of results from the first and second
experiment suggest that physiological signals are
modulated by both the subject and the mental state.
They also reveal that when we fix one of the variables,
we can accurately predict the other. However, results
from the third experiment support the idea that subject
traits have a larger contribution to the physiological
signal than the component related to the concentration
mental state. This is aligned with recent findings
for Electroencephalography (EEG) signals Arevalillo-
Herráez et al. (2019), and discourages the use of inter-
subject approaches that aim to generate a single model
that is valid across the entire population.

CONCLUSSIONS AND FUTURE WORK

One current challenge in user-centered adaptive systems
is an accurate detection of relevant mental states that
contribute to improve adaptation capabilities. One such
a state that directly influences engagement and the
success of the learner is concentration. In this work, we
have proved the success of intra-subject HMM models
at detecting concentration from a set of physiological
signals, and also shown the inability of inter-subject
models in this particular context.
Despite the positive results reported in this paper, there
are still a number of ways in which this work can and will
be extended. First, there is a need to improve labelling
methodologies, to be able to work with mistake-free data
that allows for a better estimation of accuracy measures.
Second, the already available labels in the same data
set can be used to build predicting tools for other
mental/affective states. Third, despite the negative
results at using inter-subject models, we consider
that they have to be further explored using other
alternatives such as the subject-based normalization
proposed in Arevalillo-Herráez et al. (2019) for EEG
signals, and also a larger dataset with more subjects
involved. The development of inter-subject models that
can be used on previously unseen subjects is a key issue
from a practical perspective, and would open the door
to a seamless integration of this type of technology on
today’s learning applications.
In order to further study these aspects and advance
the methodological approach and developments that
open the door towards the development of affect-aware
user-centered adaptive systems in realistic educational
scenarios, we have started two new projects financed
by the Spanish Ministry of Education. These are ITS-
MathPS and INT2AFF. The first of these projects
attempts to improve the learning of word problem

solving by using, in between other data, the student’s
personal cognitive and affective characteristics as a
solver. The second aims to advance the methodological
and practical developments required to address the
intertwine relationship between the learner’s affective
and cognitive states, as the centre and the target
of a multisensorial affect-aware user-centred adaptive
learning system, which considers the given context in
order to provide the most appropriate response to a
particular learner in a given situation.
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L.; and Arnau D., 2018. On Incorporating Affective
Support to an Intelligent Tutoring System: an
Empirical Study. IEEE-RITA, 13, no. 2, 63–69.

Duan R.N.; Zhu J.Y.; and Lu B.L., 2013. Differential
entropy feature for EEG-based emotion classification.
In International IEEE/EMBS Conference on Neural
Engineering, NER. 81–84.

Ekman R., 1997. What the face reveals: Basic
and applied studies of spontaneous expression using
the Facial Action Coding System (FACS). Oxford
University Press, USA.

Farzaneh A.H.; Kim Y.; Zhou M.; and Qi X., 2019.
Developing a deep learning-based affect recognition
system for young children. In Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Springer Verlag, vol. 11626 LNAI,
73–78.

Garbas J.U.; Ruf T.; Unfried M.; and Dieckmann
A., 2013. Towards robust real-time valence
recognition from facial expressions for market
research applications. In Proceedings - 2013 Humaine
Association Conference on Affective Computing and
Intelligent Interaction, ACII 2013. 570–575.

Ghaleb E.; Popa M.; Hortal E.; Asteriadis S.; and
Weiss G., 2019. Towards Affect Recognition through
Interactions with Learning Materials. In Proceedings
- 17th IEEE International Conference on Machine
Learning and Applications, ICMLA 2018. Institute of
Electrical and Electronics Engineers Inc., 372–379.

Hajlaoui A.; Chetouani M.; and Essid S., 2018.
EEG-based Inter-Subject Correlation Schemes in a
Stimuli-Shared Framework: Interplay with Valence
and Arousal. Tech. rep.

Hsu C.C.; Chen H.C.; Su Y.N.; Huang K.K.; and Huang
Y.M., 2012. Developing a Reading Concentration
Monitoring System by Applying an Artificial Bee
Colony Algorithm to E-Books in an Intelligent
Classroom. Sensors, 12, no. 10, 14158–14178. URL
http://www.mdpi.com/1424-8220/12/10/14158.
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